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ABSTRACT
Time is an important aspect of documents and is used in a range of
NLP and IR tasks. In this work, we investigate methods for incorpo-
rating temporal information during pre-training to further improve
the performance on time-related tasks. Compared with common
pre-trained language models like BERT which utilize synchronic
document collections (e.g., BookCorpus andWikipedia) as the train-
ing corpora, we use long-span temporal news article collection for
building word representations. We introduce BiTimeBERT, a novel
language representation model trained on a temporal collection
of news articles via two new pre-training tasks, which harnesses
two distinct temporal signals to construct time-aware language
representations. The experimental results show that BiTimeBERT
consistently outperforms BERT and other existing pre-trained mod-
els with substantial gains on different downstream NLP tasks and
applications for which time is of importance (e.g., the accuracy im-
provement over BERT is 155% on the event time estimation task).1
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1 INTRODUCTION
Temporal signals constitute significant features in various types
of text documents such as news articles or biographies. They can
be leveraged to understand chronology, causalities, developments,
and ramifications of events, being helpful in a range of different
NLP tasks. Utilizing temporal signals in information retrieval has re-
ceived considerable attention recently, too. For example, researchers
have addressed time-sensitive queries in search leading to the for-
mation of a subset of Information Retrieval called Temporal In-
formation Retrieval [8, 26] in which both query and document
temporal aspects are of key concern. Event detection and ordering
[14, 47], timeline summarization [2, 10, 36, 46, 50], event occurrence
time prediction [54], temporal clustering [9], question answering
[39, 52] and semantic change detection [41, 42] are other example
tasks where utilizing temporal information has proven beneficial.

Pre-trained language models such as BERT [15], RoBERTa [35],
GPT [7, 40] have recently achieved impressive performance on a
variety of downstream tasks, and have been commonly utilized
for representing, evaluating or generating text. However, despite
their great success, they still suffer from difficulty in capturing
important information in domain-specific scenarios, as, typically,
these models tend to be trained on large-scale general corpora (e.g.,
EnglishWikipedia) while their training is not adapted to the charac-
teristics of documents in particular domains. For example, they are
incapable of utilizing temporal signals like document timestamp,
despite temporal information being of key importance for many
tasks such as ones that involve processing news articles.

In this paper, we propose a novel, pre-trained language model
called BiTimeBERT, which is trained on a temporal news collection
by exploiting two key temporal aspects: document timestamp and
content time, the latter being represented by temporal expressions
embedded in news articles. In the recent years, exploiting these
two kinds of temporal information in documents and queries has
been gaining increased importance in IR and NLP. Their interplay
can be utilized to develop time-specific search and exploration
applications [3, 8, 26], such as temporal web search [45], temporal
question answering [52, 53], search results diversification [6, 48]
and clustering [2, 49], summarization [4], event ordering [21], etc.

While BiTimeBERT has been continually pre-trained with only
very few computation resources (less than 80 GPU hours), it out-
performs other language models by a large margin on several tasks.
Moreover, with only a small size of task-specific training data (e.g.,
20% for the EventTime dataset in year granularity), it can achieve
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performance similar to the one of baselines that use entire data. To
sum up, we make the following contributions in this work:
(1) We investigate the effectiveness of incorporating temporal infor-

mation into pre-trained language models using three different
pre-training tasks, and we demonstrate that injecting such in-
formation via specially designed time-oriented pre-training can
improve performance in various downstream time-related tasks.

(2) We propose a novel pre-trained language representation model
called BiTimeBERT, which is trained through two new pre-
training tasks that involve two kinds of temporal information
(timestamp and content time). To our best knowledge, this is the
first work to investigate both types of temporal signals when
constructing language models.

(3) We conduct extensive experiments on diverse time-related tasks
on 7 datasets that involve the two temporal aspects of text. The
results demonstrate that BiTimeBERT achieves a new SOTA
performance and can offer effective time-aware representations,
thus it has the capability to be successfully used in applications
for which time is crucial.

2 RELATEDWORK
2.1 Language Models for Specific Domains
The problem with the generic language models like BERT and GPT
is that they are pre-trained on general-purpose large-scale text
corpora (e.g., Wikipedia), which is not effective for applications
on specific domains or particular tasks. Some studies thus adapt
pre-trained models to specific domains by directly applying the
two pre-training tasks of BERT on domain-specific datasets. The
well-known examples are SciBERT [5] trained on scientific corpus,
BioBERT [33] generated using a biomedical document corpus, and
ClinicalBERT [22] derived from a clinical corpus. Another line of
work attempts to continually pre-train the available language mod-
els to target applications or tasks. For example, Ke et al. [30] propose
SentiLARE for sentiment analysis task, which continually pre-trains
RoBERTa model with the proposed label-aware masked language
model on a sentiment analysis dataset. In another strain of work,
Xiong et al. [55] design WKLM (Weakly Supervised Knowledge-
Pretrained Language Model) for entity-related tasks conducting
continual pre-training on a BERT model with the entity replace-
ment objective. This objective requires the model to make a binary
prediction indicating whether an entity has been replaced or not.
The experimental results with WKLM suggest that this kind of
adaptation can better capture knowledge about real-world entities.

2.2 Incorporating Time with Language Models
In recent years, incorporating time with language models has also
been investigated [12, 16, 18, 41, 42]. Dhingra et al. [16] propose a
simple modification to pre-training that parametrizes masked lan-
guage modeling (MLM) objective with timestamp information us-
ing temporally-scoped knowledge, and test the proposed language
model on question answering. Cole et al. [12] introduce Temporal
Span Masking task (TSM), a variant of Salient Span Masking (SSM)
[19]. TSM, which involves masking the temporal expressions in
sentences and training the model to generate them, is designed
for enhancing the model’s temporal understanding capabilities.
These two models adopt Transformer encoder-decoder architec-
tures, while most existing works are mainly based on Transformer

encoder-only models for facilitating the combination of the tempo-
ral information. Additionally, the proposed encoder-based models
mainly solve the task of semantic change detection that requires
identifying which words underwent semantic drift and to what ex-
tent. Giulianelli et al. [18] propose the first unsupervised approach
to tackle the task by using contextualized embeddings from BERT.
Rosin and Radinsky [42] extend the canonical self-attention [51]
by incorporating timestamp information, which is used to compute
attention scores. Rosin et al. [41] introduce TempoBERT, a time-
aware BERT model by preprocessing input texts to concatenate
with the timestamp information, and then masking these tokens
while training. Their solution achieves SOTA performance on se-
mantic change detection. Although Rosin et al. [41] additionally
experiment with the sentence time prediction task,2 they test Tem-
poBERT on two datasets that are of rather coarse granularity, i.e.,
the number of classes under year granularity is 40, while it is 4 in
the easier setting of a decade granularity. Moreover, the authors ob-
served a small degradation in performance on both datasets of the
sentence time prediction task when compared with the fine-tuned
BERT model.

Thus, as we see, the existing time-aware language models (except
[12, 16]) mainly focus on the problem of lexical semantic change
detection. Nonetheless, typically pre-training corpora designed for
semantic change detection are based on a sentence level, such that
each data instance is a short sentence that also rarely contains
any content time expression. Hence, existing language models for
semantic change detection neglect either the content temporal
information or the timestamp information, and might also lack
generalization abilities to other time-related tasks which require
long contents as input. In addition, because the timestamps of
the pre-training corpora are at year granularity, the timestamp
information can only be utilized at coarse granularity (i.e., year or
even a decade).

Similar to the above pre-trained models (e.g., TempoBERT [41]),
our proposal is also a Transformer-based [51] language model.
However, unlike all the aforementioned approaches, it exploits
both timestamp and content time during pre-training on a temporal
news collection. As we demonstrate in our experiments, building
such a language model is both advantageous and of high utility,
especially in temporal information retrieval, question answering
over temporal collections, and in other NLP tasks that rely on
temporal signals.

3 METHOD
In this section, we present BiTimeBERT, the pre-trained language
representation model based on Transformer encoder [51]. As men-
tioned before, the model is trained on a temporal collection of news
articles via two new pre-training tasks, which involve document
timestamp and content time (i.e., the temporal expressions embed-
ded in the content) to construct time-aware language representa-
tions. Our approach is inspired by BERT [15], but distinguishes itself
from it in three ways. Firstly, it is trained on a news article collec-
tion spanning two decades rather than on synchronic datasets (such
as Wikipedia or Web crawl). Note that even if some language mod-
els use news article datasets for training (e.g., RoBERTa [35] uses
2In Section 5.5, we compare our proposed model with TempoBERT on both semantic
change detection and sentence time prediction tasks.
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Figure 1: An illustration of BiTimeBERT training, which includes the TAMLM and DD tasks.

Figure 2: Example of the replacement procedure in TIR task.

CC-NEWS [37]), they still utilize the same training technique as on
the synchronic document collections, which essentially ignores the
temporal aspects of documents. Secondly, we use a different mask-
ing scheme, time-aware masked language modeling (TAMLM) to
randomly mask spans of temporal information first rather than just
randomly sample tokens from the input. This explicitly forces the
model to incorporate both domain knowledge of news archive and
temporal information embedded in the document content. Finally,
we replace the next sentence prediction (NSP) with an auxiliary ob-
jective, document dating (DD), which also lets the model incorporate
timestamp information while training. As document dating is a type
of time prediction, this objective introduces time-related and task-
oriented knowledge to the model, and should also aid in improving
the performance of other time-related tasks. Figure 13 illustrates the
two proposed objectives. BiTimeBERT is jointly trained on the two
proposed tasks of TAMLM and DD, with two different additional
layers based on the output of its Transformer network. Moreover,
we also propose and test another third pre-training task, temporal
information replacement (TIR), which, same as TAMLM, makes use
of content time, and which, as we found, achieves relatively good
performance in some time-related downstream tasks. Figure 2 gives
a simple example of the replacement procedure in TIR. All these
objectives use cross entropy as the loss function. We describe them
in the following sections.

3.1 Time-aware Masked Language Modeling
As mentioned above, the first pre-training objective, time-aware
masked language modeling (TAMLM), explicitly introduces content
time (the temporal information embedded in the document content)
during pre-training. This kind of temporal information could be
used in understanding the developments of events and identifying
the relations between events referred to in text. For example, as
discussed earlier, temporal expressions in news (especially ones
that refer to past events) have been already used for constructing
timeline summaries of temporal news collections [57].

Suppose there is a token sequence 𝑋 = (𝑥1, 𝑥2, ..., 𝑥𝑛), where 𝑥𝑖
(1 ≤ 𝑖 ≤ 𝑛) indicates a token in the vocabulary. First, the temporal
expressions in document content are recognized using spaCy (as
indicated by the gray font at the bottom in Figure 1). The recognized
temporal expression set is denoted by 𝑇 = (𝑡1, 𝑡2, ..., 𝑡𝑚), where 𝑡𝑖
(1 ≤ 𝑖 ≤ 𝑚) indicates a particular temporal expression found in
3The selected example is the news article published in The New York Times on
2007/02/23, with the title "Bronx: No Retrial in Murder Case".

the document. Second, unlike in the case of BERT where 15% of
the tokens are randomly sampled in a direct way, we first focus
on the extracted temporal expressions. 30%4 of the entire temporal
expressions in 𝑇 are then randomly sampled (e.g., "last December"
in Figure 1). Third, we continuously randomly sample other tokens
which are not the tokens in 𝑇 , until 15% of the tokens in total are
sampled and masked (e.g., in Figure 1, "conviction" is masked while
"1993" and "yesterday" are not selected to be masked). Finally, same
as in BERT, 80% of the sampled tokens are replaced with [MASK],
10% with random tokens, and 10% with the original tokens.

Through this masking scheme, we encourage the model to focus
on the domain knowledge (news article collection in our case) as
well as the content’s temporal information. This objective forces
the model to incorporate not only the knowledge of the related
events, but also the relations between temporal expressions that are
not masked when predicting the tokens of masked temporal expres-
sions. For example, in Figure 1, the masked temporal expression is
associated with the overturning of a particular murder conviction
that took place in 1993.
3.2 Document Dating
The second pre-training objective, document dating (DD), incorpo-
rates document timestamp during pre-training. In news archives,
each article is usually annotated with a timestamp, corresponding
to the date when it was published. As mentioned before, times-
tamp information can be applied in retrieval, for example, it has
been often utilized in temporal information retrieval for estimating
document relevance scores [29, 34, 53].

Similar to BERT, the [CLS] token is inserted at the beginning of
the input, and its representation, ℎ [𝐶𝐿𝑆 ] , is utilized to provide the
contextual representation of the entire token sequence. However,
rather than performing binary classification for the next sentence
prediction, we utilize this token to predict the document timestamp,
as shown in Figure 1. Temporal granularity of timestamp,5 denoted
by 𝑔, is an important hyper-parameter in this task since timestamp
information can be represented at year, month or day temporal
granularity. The example shown in Figure 1 uses month granularity.

Jatowt and Au Yeung [23] investigate different granularities in
news articles showing that time distance and time granularity in
news articles are inter-related. Wang et al. [54] also test their pro-
posed model trained at different granularities for the event time
estimation task, and the time is estimated using the same granularity
as in the training step. Thus, the choice of 𝑔 in BiTimeBERT should
also have an effect on the results of downstream tasks. Loosely
speaking, the coarser the granularity, the easier is for the model
to predict the timestamp during pre-training, however, the model
4We chose 30% as it gives the best performance in most cases after testing models with
different percentages in TAMLM task.
5E.g., the timestamp of an article published in "2007/02/23" under day granularity
becomes "2007/02" under month granularity, and "2007" under year granularity.
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trained on coarse granularity (e.g., year granularity) might not per-
form well on difficult time-related tasks. In Section 5.2.2, we analyze
the effect of different choices of 𝑔.

The DD objective incorporates timestamp information during the
pre-training phase, which represents the time point at which each
document in the pre-training corpus was published. This objective
actually introduces task-oriented knowledge to the language model,
which strengthens the model on time-related tasks, especially the
tasks with a small number of fine-tuning examples - insufficient
for training using task-agnostic language models. Other studies
also adapt their language models to the task-specific knowledge
via task-oriented pre-training objectives, and show good results
after fine-tuning on the corresponding target tasks. For example,
Sentilare model [30], which we introduced in Section 2.1, is trained
to classify the sentence sentiment during pre-training and then
achieves good results on sentiment analysis task. Han et al. [20]
pre-train their model viaMLM together with the proposed utterance
relevance classification objective, and afterwards also demonstrate
that it performs well on response selection task. Similarly, Xu et al.
[56] continually train BERT via reading comprehension objective
with good results on the review reading comprehension task.

3.3 Temporal Information Replacement
We also experiment with one more way in which temporal infor-
mation of documents could be utilized while pre-training. The last
pre-training task we investigate has been inspired by WKLM [55].
The authors prove that entity replacement objective can help to
capture knowledge about real-world entities. We devise a similar
objective called temporal information replacement (TIR) that aims
at training the model to capture temporal information of the docu-
ment content. Similar to WKLM that replaces entities of the same
type (e.g., the entities of PERSON type can only be replaced with
other entities of PERSON type), we enforce the replaced tempo-
ral expressions to be of the same temporal granularity. First, the
timestamp information is inserted at the beginning of the document
content and will not be replaced or predicted in the latter steps. This
information is useful for the model to understand relative temporal
information, e.g., in Figure 2, "February 23, 2007" could help to infer
the actual date denoted by "yesterday". We then collect temporal
expressions in the news articles using SUTime [11], a popular tool
for recognizing and normalizing temporal expressions, and then
group those temporal expressions at year, month, and day gran-
ularities.6 Then, 50% of the time, the temporal expressions of the
input sequence are replaced by other temporal expressions, which
are randomly sampled from the collected temporal expressions’ set
of the same granularity, while no replacement is done for the other
50%. For example, in Figure 2, "1993" is replaced by "2003" (note that
both are of the same granularity), while "yesterday" is not replaced.
Then, similar to WKLM, for each temporal expression, the final
representations of its boundary words (words before and after the
temporal expression) are concatenated and used to make a binary
prediction ("replaced" vs. "not replaced").

Note that TIR is an alternative task of TAMLM which also uti-
lizes the content temporal information, yet it is based on swapping
6E.g., "1993" is under year granularity, and an implicit temporal expression like "yester-
day" with the corresponding article’s timestamp information "2007/02/23" is resolved
and converted to "2007/02/22" under day granularity, etc.

Table 1: Sample data from our datasets of time-related tasks.
Dataset Text (Event Description or Document Content) Time

EventTime Nineteen European nations agree to forbid human cloning. 1998-01-12
WOTD American Revolution: British troops occupy Philadelphia. 1777
NYT-

Timestamp
It was a message of support and encouragement that Secretary
of State Warren Christopher delivered to President Boris ... 1989-10-09

TDA-
Timestamp

The Comnaissioners appointed to inquire into the alleged corrupt
pratctices at Norwich havo made, their report. It cnmmences ... 1876-03-20

instead of masking. However, as will be shown later, our experi-
ments demonstrate that this task can even decrease performance
in some downstream tasks. Thus it is not used in the final model of
BiTimeBERT.

4 EXPERIMENTAL SETTINGS
4.1 Pre-training Dataset and Implementation
For the experiments, we use the New York Times Annotated Corpus
(NYT corpus) [43] as the underlying dataset for pre-training. The
NYT corpus contains over 1.8 million news articles published be-
tween January 1987 and June 2007, and has been frequently used in
Temporal Information Retrieval researches [8, 27]. Note that before
the pre-training, we randomly sample and remove 50,000 articles
from the NYT corpus to use them for running experiments on the
document dating downstream task (introduced in Section 4.2), thus
these articles are excluded from our pre-training dataset.

As our method can adapt to all the Transformer encoder-based
language models, we use BERT [15] as the base framework. Con-
sidering the high cost of training from scratch, we utilized the
parameters of pre-trained 𝐵𝐸𝑅𝑇𝐵𝐴𝑆𝐸 (cased) to initialize our model.
BiTimeBERT was continually pre-trained on the NYT corpus for 10
epochs with the TAMLM and the DD task.7 Themaximum sequence
length was 512, while the batch size was 8. We used AdamW [31]
as the optimizer and set the learning rate to be 3e-5, with gradient
accumulation equal to 8. Finally, the monthly temporal granularity
was used in DD task.8

4.2 Downstream Tasks
We first test our proposal on four datasets of two time-related
downstream tasks. These tasks require predicting event occurrence
time (EventTime dataset [54] andWOTD dataset [21]) and document
timestamp (NYT-Timestamp dataset and TDA-Timestamp dataset).
Note that as current time-aware language models (e.g., TempoBERT
[41]) have not been originally tested on these two tasks, we do not
discuss them in this section. However, in Section 5.5, we evaluate
the performance of BiTimeBERT on three datasets of two other
tasks that other time-aware languagemodels have been tested in the
past (i.e., semantic change detection and sentence time prediction).

The details of 4 datasets we first use are discussed below:
(1) EventTime [54]: This dataset consists of the descriptions and
occurrence times of 22,398 events (between January 1987 and June
2007) that were originally collected fromWikipedia year pages9 and
"On This Day" website.10 We will compare our approach with the
SOTA method for this dataset. As the SOTA method [54] conducts
search on the entire NYT corpus, we create an additional dataset

7The experiments took about 80 hours on 1 NVIDIA A100 GPU.
8We will study the effect of temporal granularity in DD task in Section 5.2.2.
9https://en.wikipedia.org/wiki/List_of_years
10https://www.onthisday.com/dates-by-year.php

https://en.wikipedia.org/wiki/List_of_years
https://www.onthisday.com/dates-by-year.php
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Table 2: Statistics of the datasets.
Dataset Size Time Span Source Granularity Task

EventTime 22,398 1987-2007 Wikipedia & "On
This Day" Website

Day, Month,
Year

Event
Time Estimation

WOTD 6,809 1302-2018 Wikipedia Website Year Event
Time Estimation

NYT-
Timestamp 50,000 1987-2007 News Archive Day, Month,

Year Document Dating

TDA-
Timestamp 50,000 1785-2009 News Archive Day, Month,

Year Document Dating

NYT-
Corpus

1.8
Million 1987-2007 News Archive

Day, Month,
Year Pre-training

called EventTime-WithTop1Doc, with the objective to simulate a
similar input setting as in [54]. The top-1 relevant document of each
event in the NYT corpus is firstly extracted using the same retrieval
method (BM25) as in [54], and the new model input is provided
containing the target event description together with appended
timestamp and text content of the top-1 document.
(2) WOTD [21]: This dataset was scraped from Wikipedia’s On
this day webpages,11 and includes 6,809 short descriptions of events
and their occurrence year information. WOTD consists of 635
classes, corresponding to 635 different occurrence years. The earli-
est year is 1302, while the latest is 2018. The median year is 1855.0
whereas the mean is 1818.7. Moreover, the authors additionally pro-
vide several sentences about an event, which they call contextual
information (CI).12 The contextual information is in the form of
relevant sentences extracted fromWikipedia. Thus, we test two ver-
sions of this dataset, with contextual information (CI) and without
it (No_CI). Note that only year information is given as gold labels,
hence the tested models can only predict time at year granularity.
Note also that the time span of WOTD dataset (1302-2018) is much
longer (and also older) than the one of the NYT corpus (1987-2007)
which we used for pre-training. Hence, we can analyze if the models
are robust by using WOTD dataset.
(3) NYT-Timestamp: To evaluate the models on the document
dating task, we use the 50,000 separate news articles of the NYT
corpus [43] as mentioned in Section 4.1.
(4) TDA-Timestamp:13 We also test the document dating task
on another news corpus, the Times Digital Archive (TDA). TDA
contains over 12 million news articles published across more than
200 years (1785-2012),14 and the time frame of timestamp infor-
mation of the 50,000 articles that we randomly sampled from this
dataset ranges from "1785/01/10" to "2009-12-31". We think that,
similarly to WOTD dataset, such a long time span could also help
in comparing the robustness of different models.
Same as [54] and [21] who use a 80:10:10 split to divide EventTime
and WOTD, we also divide the constructed NYT-Timestamp, and
TDA-Timestamp using the same ratio. Table 2 summarizes the basic
statistics of the four datasets for downstream tasks along with
11https://en.wikipedia.org/wiki/Wikipedia:On_this_day/Today, accessed 01/2023.
12For example, the contexual information of the WOTD example in Table 1 is "The
Loyalists never controlled territory unless the British Army occupied it."
13https://www.gale.com/binaries/content/assets/gale-us-en/primary-sources/intl-
gps/ghn-factsheets-fy18/ghn_factsheet_fy18_website_tda.pdf
14Note that despite TDA containing more articles and spanning a longer time period,
the high number of OCR errors in TDA was the reason why we decided not to use it
for pre-training but only for testing. Compared with the NYT, the errors are relatively
common in TDA (see for example, the last row in Table 1). [38] shows that TDA has a
high OCR error rate, especially, in the early years. The average error rate from 1785 to
1932 was found to be above 30%, while the highest rate can even reach about 60%.

describing also our pre-training corpus (i.e., the NYT corpus), while
Table 1 presents the examples. As we can see in Table 2, WOTD
and TDA-Timestamp have much longer time spans than the one
of the pre-training corpus. As shown in Table 1, the examples of
EventTime, NYT-Timestamp, and TDA-Timestamp consist of either
detailed occurrence date information or of timestamp information.
Therefore, the models tested on these three datasets can be fine-
tuned to estimate the time with different temporal granularities.
On the other hand, models fine-tuned on WOTD can only predict
the time under a year granularity. Naturally, the dataset difficulty
increases when the time is estimated at finer granularities (e.g.,
month or day), as the number of labels will also greatly increase.
For example, for TDA under day granularity, the label count equals
to 29,551 which corresponds to the number of days in the dataset.

Note that as event occurrence time estimation requires predicting
the time of a given short event description, it is similar to the
temporal query analysis (or temporal query profiling) [8, 25, 26],
which aims to identify the time of the interest of short queries, and
plays a significant role in temporal information retrieval so that
time of queries and time of documents can be matched. Another
example of how event occurrence time can be used in practice is
in Question Answering over temporal document collections. In
this kind of QA, a question that does not contain any temporal
expression can be first mapped to its corresponding time period
(i.e., time period when the event underlying the question took place)
so that the documents from that period can be then processed by a
document reader module [52, 53].15

4.3 Evaluation Metrics
As all the above downstream tasks predict time, we use accuracy
(ACC) and mean absolute error (MAE) for evaluation, same as [54].
1) Accuracy (ACC): The percentage of the events whose occur-

rence time is correctly predicted.
2) Mean absolute error (MAE): The average of the absolute dif-

ferences between the predicted time and the correct occurrence
time, based on the specified granularity.

Note that except WOTD dataset, which contains only year infor-
mation, all models could be evaluated under all the three temporal
granularities (i.e., day, month and year). However, as all the pre-
trained language models achieve rather poor results under day
granularity,16 we decided to report the results for all granularities
only when analyzing the effect of different choices of granularities
in DD task (Section 5.2.2). In particular, in Section 5.2.2 we aim
to investigate whether the performance of BiTimeBERT could be
improved when using a day granularity in DD task.

4.4 Tested Models
We test the following models:
(1) RG: RandomGuess. The results are estimated by random guess,
and the average of 1,000 random selections is used.
(2) BERT: The 𝐵𝐸𝑅𝑇𝐵𝐴𝑆𝐸 (cased) model [15].
(3) BERT-NYT: The 𝐵𝐸𝑅𝑇𝐵𝐴𝑆𝐸 (cased) that is continually pre-
trained on the NYT corpus for 10 epochs with MLM and NSP tasks.

15In Section 5.3 and Section 5.4 we will actually experiment with BiTimeBERT applied
in temporal query profiling and temporal question answering, respectively.
16Still BiTimeBERT outperforms other language models (e.g., under day granularity of
EventTime-WithTop1Doc, the ACC score of BiTimeBERT is 2.07, while the scores of
BERT, BERT-NYT and BERT-TIR are only 0.04, 0.13 and 0.09, respectively.)

https://en.wikipedia.org/wiki/Wikipedia:On_this_day/Today
https://www.gale.com/binaries/content/assets/gale-us-en/primary-sources/intl-gps/ghn-factsheets-fy18/ghn_factsheet_fy18_website_tda.pdf
https://www.gale.com/binaries/content/assets/gale-us-en/primary-sources/intl-gps/ghn-factsheets-fy18/ghn_factsheet_fy18_website_tda.pdf
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(4) SOTA: SOTA results of EventTime andWOTD,which are taken
from [54] and [21], respectively. Note that the two methods are not
based on language models, and both consist of complex rules or
steps of searching and filtering results to obtain the features for
estimating the correct date, thus they cannot be easily and quickly
applied in other similar tasks.
(5) BERT-TIR: The 𝐵𝐸𝑅𝑇𝐵𝐴𝑆𝐸 (cased) model continually pre-
trained on the NYT corpus for 10 epochs using MLM and TIR.
(6) BiTimeBERT: The BiTimeBERTmodel continually pre-trained
on the NYT corpus for 10 epochs using TAMLM and DD tasks.
4.5 Fine-tuning Setting
We fine-tune the above language models to the downstream tasks
of the four datasets. For each language model, we take the final
hidden state of the first token, ℎ [𝐶𝐿𝑆 ] , as the representation of the
whole sequence and we add a softmax classifier whose parameter
matrix is 𝑋 ∈ R𝐾𝑥𝐻 , where K is the number of categories of the
corresponding dataset. In all the settings, we apply a dropout of 0.1
and optimize cross entropy loss using Adam optimizer, with the
learning rate equal to 2e-05 and batch size of 16. The maximum se-
quence length of the models’ fine-tuning on EventTime and WOTD
is set to 128 as each input is a short event description, while the
maximum length on EventTime-WithTop1Doc, NYT-Timestamp,
TDA-Timestamp is 512, as their input sequence could be very long.

5 EXPERIMENTAL RESULTS
5.1 Main Results
5.1.1 Event Occurrence Time Estimation. Table 3 and Table 4 present
the results of themodels on estimating the event occurrence time us-
ing EventTime and WOTD, respectively. We first note that BiTime-
BERT outperforms other language models,17 in ACC and MAE on
two datasets over different settings (i.e., year/month granularities,
and with/without top1 document information, and with/without
contextual information). In addition, we argue that the task is not
easy as RG results indicate very poor performance on both datasets.

When considering the year and month granularities of the origi-
nal EventTime dataset, the improvement comparing BiTimeBERT
with BERT is in the range of 47.39% to 155.21%, and from 10.09% to
20.59% on ACC and MAE metrics, respectively. BiTimeBERT also
performs much better than BERT-NYT under both granularities,
which achieves similar results as BERT. Moreover, BERT-TIR, the
model trained using MLM and the proposed TIR task, shows rela-
tively good performance, too; for example, when comparing with
BERT-NYT at year granularity using ACC and MAE, the improve-
ment is 19.53%, 9.27%, respectively.

When considering EventTime-WithTop1Doc dataset in which
the top-1 document is taken into account for the language models,
a significant improvement of BiTimeBERT can be observed. For ex-
ample, at month granularity using ACC andMAE, the improvement
is 98.31% and 17.05%, respectively. In addition, BiTimeBERT outper-
forms BERT by an even larger margin at month granularity, with
the improvement of 330.77%, 23.95% on ACC and MAE, respectively.
BERT-TIR also surpasses BERT with the improvement of 184.45%,
16.42%. When comparing with SOTA [54], BiTimeBERT achieves
similar or even better results under both granularities. Moreover,
we note that SOTA [54] requires rather considerable time to prepare
17The SOTA methods [54] and [21] are not based on language models.

the input for time estimation. Their proposed model utilizes the
multivariate time series as the input, which are constructed by ana-
lyzing the temporal information of the top-50 retrieved documents
and filtering out irrelevant information through several complex
steps like sentence similarity computation. As we simply use top-1
document ranked by BM25, we believe that the performance of
BiTimeBERT could be even further improved by combining with
more useful information via more advanced IR techniques.

When considering WOTD dataset, BiTimeBERT outperforms
SOTA [21] using accuracy as an evaluation metric, as shown in
Table 4. Especially when the contextual information18 is provided,
the improvement is 75.95%. We also observe that BERT-NYT and
BERT-TIR can surpass SOTA [21] and BERT when using contextual
information. Note that the two latter methods do not utilize news
archives, which suggests that the news archives might be more
effective to be used in such a task rather than synchronic document
collections (e.g., Wikipedia). As BiTimeBERT achieves good per-
formance on WOTD, which is a challenging dataset due to having
time span much longer than the one of the pre-training corpus, we
think that it has good generalization ability.
5.1.2 Document Dating. Table 5 presents the results of the docu-
ment dating tasks. All the language models achieve weak results
under month granularity at TDA-Timestamp, likely due to TDA-
Timestamp having 2,627 month labels. In addition, the timestamps
in the 50,000 articles of TDA-Timestamp range from 1785 to 2009,
which further increases the difficulty. We thus mainly compare the
models on NYT-Timestamp of year and month granularities, and on
TDA-Timestamp of year granularity. BiTimeBERT still outperforms
other language models with substantial gains. When considering
the year and month granularities of NYT-Timestamp, the improve-
ment comparing BiTimeBERT with BERT-NYT is in the range of
51.57% to 277.43%, and from 43.26% to 48.01% on ACC and MAE
metrics, respectively. When considering TDA-Timestamp under
year granularity, the improvement is 26.33% and 11.18% on ACC
andMAE, respectively. In addition, BERT-TIR also obtains relatively
good results on both datasets, suggesting that the TIR task is also
effective, however substantially less than when using BiTimeBERT.

5.2 Additional Analysis
5.2.1 Ablation Study. To study the effect of the two objectives of
BiTimeBERT, we next conduct an ablation analysis and present its
results in Table 6 and Table 7. We compare in total five models that
use different pre-training tasks and test them on the four datasets.
DD, TAMLM, MLM indicate the corresponding models trained
using only DD, TAMLM or MLM tasks, respectively. MLM+DD
means the model is trained using both BERT’s MLM task and our
proposed DD objective. For fair and effective comparison, all five
models continually pre-train 𝐵𝐸𝑅𝑇𝐵𝐴𝑆𝐸 with their specific pre-
training tasks on the NYT corpus for 3 epochs.

As shown in Table 6 and Table 7, BiTimeBERT, which uses
TAMLM and DD as the pre-training tasks, achieves the best results
across all the datasets, suggesting that the two proposed objectives
contribute to the performance of our model. When considering the
models that use only one of the pre-training objectives of BiTime-
BERT, TAMLM or DD, the performance is better than MLM in most
18As explained in Section 4.2 contextual information contains the relevant sentences
extracted from Wikipedia as the external knowledge.
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Table 3: Performance of different models on EventTime
datasets with two different settings.

Model
EventTime EventTime-WithTop1Doc

Year Month Year Month
ACC MAE ACC MAE ACC MAE ACC MAE

RG 4.77 6.92 0.41 81.60 4.77 6.92 0.40 81.70
BERT 21.65 3.47 5.09 43.81 35.98 3.89 5.98 37.95
BERT-NYT 21.25 3.56 5.18 43.50 34.46 4.45 8.21 34.14
SOTA [54] - - - - 40.93 3.01 30.89 36.19
BERT-TIR 25.40 3.23 6.83 40.45 36.47 3.54 17.01 31.72
BiTimeBERT 31.91 3.12 12.99 34.79 41.96 2.40 25.76 28.86

Table 4: Performance of different models on WOTD dataset
with/without contextual information.

Model NO_CI CI
ACC MAE ACC MAE

RG 0.16 217.72 0.15 217.57
BERT 7.20 52.58 9.69 41.16
BERT-NYT 8.08 53.75 19.97 36.47
SOTA [21] 11.40 - 13.10 -
BERT-TIR 10.13 54.92 18.36 35.99
BiTimeBERT 11.60 48.51 23.05 33.70

Table 5: Performance of different models for document dat-
ing on NYT-Timestamp and TDA-Timestamp.

Model
NYT-Timestamp TDA-Timestamp

Year Month Year Month
ACC MAE ACC MAE ACC MAE ACC MAE

RG 4.77 7.06 0.41 81.79 0.45 75.39 0.04 873.88
BERT 35.00 1.64 2.56 22.74 15.84 44.87 0.80 632.66
BERT-NYT 38.74 1.41 8.24 18.35 15.04 45.16 0.66 669.02
BERT-TIR 48.06 1.09 20.30 13.54 17.72 43.53 1.26 589.69
BiTimeBERT 58.72 0.80 31.10 9.54 19.00 40.11 2.38 580.25 Figure 3: Impact of training data size (best viewed in color).

Table 6: Ablation test on event occurrence time estimation.

Model
EventTime WOTD

Year Month NO_CI CI
ACC MAE ACC MAE ACC MAE ACC MAE

TAMLM 23.05 3.37 6.87 41.16 9.43 53.48 19.82 38.74
DD 24.81 3.41 7.02 41.62 9.56 60.14 18.42 40.64
MLM 21.52 3.45 5.71 44.47 8.66 55.66 18.80 40.85
MLM+DD 25.05 3.63 7.92 40.36 10.51 59.74 19.12 42.14
BiTimeBERT 29.51 3.17 10.80 36.11 11.16 51.09 22.47 36.80

Table 7: Ablation test on document dating.

Model
NYT-Timestamp TDA-Timestamp

Year Month Year Month
ACC MAE ACC MAE ACC MAE ACC MAE

TAMLM 39.92 1.46 8.80 16.74 14.96 45.80 0.95 623.14
DD 49.86 1.32 21.74 14.05 15.61 46.23 1.23 622.25
MLM 36.98 1.51 3.46 19.17 14.44 46.08 0.64 693.14
MLM+DD 51.48 1.19 23.86 14.18 15.34 45.91 1.24 616.51
BiTimeBERT 56.08 0.81 27.42 10.56 18.54 43.00 1.94 595.47

cases. This confirms that the two proposed pre-training tasks of
BiTimeBERT are both helpful in obtaining effective time-aware
language representations of text. Yet, incorporating at the same
time the two proposed objectives of BiTimeBERT that make use of
different temporal aspects produces the best results.

5.2.2 Effect of Different Temporal Granularities in DD. We examine
now BiTimeBERT training using different settings for the temporal
granularity 𝑔 in DD objective. We first pre-train different BiTime-
BERT variants with three different𝑔 for 3 epochs, and then fine-tune
the models on four datasets. The models of different granularities
are denoted by BiTimeBERT-Year, BiTimeBERT-Month and
BiTimeBERT-Day. As shown in Table 8, BiTimeBERT-Month
achieves the best results most of the time, while BiTimeBERT-Day
performs poorly in some "easy" tests, e.g., for the EventTime and
NYT-Timestamp of year granularity, as well as WOTD with CI. We
also observe that none of the models can produce relatively good
performance on the hard tasks (e.g., EventTime of day granularity).
This might be mainly due to: (1) the models are still under-fitting
and may need to be trained with more epochs, especially, at day
granularity in DD task, and (2) more data is needed for pre-training.

5.2.3 Data Size Analysis. Figure 3 (left) and Figure 3 (right) plot
the accuracy of four pre-trained language models on EventTime of
various sizes of training data, under year and month granularities,
respectively. First of all, BiTimeBERT consistently performs better
than other models using the same size of training data, and can
achieve the similar best performance of other models by usingmuch
less data. In addition, especially under month granularity, we can
observe a clear increasing trend of the accuracy of BiTimeBERT
model. It might be even able to achieve new SOTA performance if
more data is used, while BERT and BERT-TIR models exhibit less
performance gain when using more data.

5.2.4 Temporal Semantic Similarity Analysis. We now perform sim-
ple similarity experiments without fine-tuning in order to measure
whether BiTimeBERT indeed generates effective time-aware lan-
guage representations when it is not adapted to any particular
downstream task. The EventTime dataset which contains infor-
mation of events that occurred between January 1987 and June
2007 is used here again. In particular, we first collect contextual
representations (i.e., the final hidden state vector of [CLS] output
by the model) of all possible atomic time units from the range of
January 1987 to June 2007, under year and month granularities.
For example, under year granularity, such a set contains 21 vectors
corresponding to the representations of temporal expressions from
"1987" to "2007". For a given event description, we then compute the
cosine similarities between its contextual representation and the
representation of each temporal expression in the set. The temporal
expression with the largest similarity score is finally considered as
the estimated event time for the event. As shown in Table 9, BiTime-
BERT outperforms BERT and BERT-NYT by a large margin under
both granularities, demonstrating that it can construct more effec-
tive time-aware language representations, and learns both domain
knowledge and task-oriented knowledge even without fine-tuning.

5.3 Case Study on Time-Sensitive Queries
We next conduct two types of small case studies of event time pre-
diction. This time we apply a challenging setting by using short
time-sensitive queries related to events19 to estimate their dates
under year granularity by applying BiTimeBERT without any fine-
tuning. The queries represent non-recurring as well as recurring
events. A non-recurring event is an event that occurred at one spe-
cific time point (e.g., "9/11 attacks"), while a recurring event is one
19Compared with EventTime dataset for which the average number of tokens of event
descriptions is 17.3, the average number of tokens of the queries here is only 3.2.
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Table 8: BiTimeBERT with different temporal granularities on event occurrence time estimation and document dating.

Model
EventTime WOTD NYT-Timestamp TDA-Timestamp

Year Month Day NO_CI CI Year Month Day Year Month Day
ACC MAE ACC MAE ACC MAE ACC MAE ACC MAE ACC MAE ACC MAE ACC MAE ACC MAE ACC MAE ACC MAE

BiTimeBERT-Year 30.71 3.06 8.62 38.35 0.76 1772.48 9.84 59.76 20.56 35.67 57.48 0.78 19.46 11.30 0.34 401.88 17.88 43.93 1.02 575.04 0.00 14168.61
BiTimeBERT-Month 29.51 3.17 10.80 36.11 1.83 1743.75 11.16 51.09 22.47 32.92 56.08 0.81 27.42 10.56 0.72 406.52 18.54 43.00 1.30 643.38 0.02 12083.72
BiTimeBERT-Day 26.43 3.18 7.99 38.42 1.27 1647.64 10.72 53.36 17.47 40.22 54.06 0.91 19.46 11.02 0.64 398.77 18.08 43.41 1.14 603.71 0.00 13794.74

Table 9: Temporal semantic similarity on the EventTime
dataset. The models are tested without fine-tuning.

Model Year Month
ACC MAE ACC MAE

BERT 3.03 10.47 0.13 76.97
BERT-NYT 4.82 7.36 0.66 76.36
BERT-TIR 11.29 5.99 1.91 82.04
BiTimeBERT 14.33 5.72 3.83 66.35

that occurred multiple times in the past (e.g., "Summer Olympic
Games"). Similar to Section 5.2.4, we compare the cosine similarity
of the representations between a query and each temporal expres-
sion. However, rather than computing ACC andMAE using the date
with the largest similarity score, we return a ranked list of dates
and calculate MRR (Mean Reciprocal Rank) for the non-recurring
event test. This is done in order to find "where is the correct time of
non-recurring event located in the list". On the other hand, for the
recurring event test, we use MAP (Mean Average Precision) to find
"if all occurrence dates of a recurring event are at the top of list".
5.3.1 Non-recurring events. For non-recurring events, we prepared
10 example short queries of September 11 attacks that occurred in
2001: "9/11 attacks", "Aircraft hijackings", "19 terrorists", "Osama bin
Laden", "the Twin Towers", "War on terrorism", "American Airlines
Flight 77", "American Airlines Flight 11", "United Airlines Flight
175", "United Airlines Flight 93". We then created the ranked list
by comparing the similarity between the query vector and vectors
of temporal expressions under year granularity, from "1987" to
"2007". As shown in Table 10 (left), BiTimeBERT performs the best,
demonstrating that it effectively captures the knowledge of correct
temporal information for such event.
5.3.2 Recurring events. For recurring events, we also collected 10
short queries representing important and periodical example events:
"Summer Olympic Games", "FIFAWorld Cup", "Asian Games", "Com-
monwealth Games", "World Chess Championship", "United States
presidential election", "French presidential election", "United King-
dom general election", "United States senate election", "United States
midterm election". Note that as these events also occurred before
1987, we additionally compare them with the temporal expressions
under year granularity within the time period from "1966" to "1986".
Thus, two ranked lists of dates are obtained. As shown in Table 10
(right), BiTimeBERT also performs the best, indicating that most
occurrence dates appeared at the top of the list. Moreover, when es-
timating dates outside the time span of the pre-training corpus, i.e.,
from "1966" to "1986", BiTimeBERT also obtains good performance.

These results also indicate that BiTimeBERT successfully fuses
both domain knowledge and task-oriented knowledge extracted
from temporal news collection during the pre-training phase, and
is able to construct effective word representations that capture
temporal aspects of queries, even very short queries.

5.4 Application for Temporal QA
BiTimeBERT can be used in several ways and supports different
applications for which time is important. As we have seen in Sec-
tions 5.1.1 and 5.3, it can be easily applied in temporal information

Table 10: Results on non-recurring (left) and recurring events
(right). The models are tested without fine-tuning.

Model
Non-recurring

Events
MRR

BERT 0.1277
BERT-NYT 0.3601
BERT-TIR 0.4533
BiTimeBERT 0.5417

Model
Recurring Events

1966-1986 1987-2007
MAP MAP

BERT 0.4042 0.3512
BERT-NYT 0.3633 0.3197
BERT-TIR 0.4449 0.4661
BiTimeBERT 0.5294 0.6686

Table 11: Performance of different models in QA task.
Model Top 1 Top 5 Top 10 Top 15

EM F1 EM F1 EM F1 EM F1
QANA [53] 21.00 28.90 28.20 36.85 34.20 44.01 36.20 45.63

QANA+BiTimeBERT 22.40 29.31 29.20 37.14 34.80 44.34 36.40 46.01

retrieval [1, 8], for example, aiding in the time-based exploration
of textual archives by estimating the time of interest of queries, so
that the computed query temporal information could be utilized
for time-aware document ranking. Other potential applications are:
document dating [24, 28, 32], temporal image retrieval [17], event
detection and ordering [14, 47], temporal QA [39, 52], etc.

We demonstrate here how BiTimeBERT could be utilized in one
such application. In particular, we improve a temporal question
answering system called QANA [53], which achieves good per-
formance in answering event-related questions that are implicitly
time-scoped (e.g., "Which famous painting by Norwegian Edvard
Munch was stolen from the National Gallery in Oslo?" is an im-
plicitly time-scoped question as it does not contain any temporal
expression, yet it is implicitly related to temporal information of
its corresponding specific event, which is "1994/05"). To answer
implicitly time-scoped questions, QANA needs to first estimate
the time scope of the event described in the question at month
granularity, which is then mapped to the time interval with the
"start" and "end" information (e.g., one possible time scope of the
above-mentioned question example is ("1994/03", "1994/08")).

Instead of analyzing the temporal distribution of retrieved docu-
ments to estimate the time scope as is in QANA’s original implemen-
tation, we adapt QANA by using the BiTimeBERT fine-tuned on
EventTime-WithTop1Doc under month granularity. Similar to the
way of constructing EventTime-WithTop1Doc, the top-1 relevant
document of each question is first selected using BM25, and then
its timestamp and text content are appended to the corresponding
questions, which are further sent to BiTimeBERT as an input. We
then keep two time points of the top 2 probabilities predicted by
BiTimeBERT, which are then ordered and used as "start" and "end"
information of the estimated question’s time scope. The estimated
time scope is then utilized for reranking documents, and finally, the
answers are returned by the Document Reader Module of QANA. In
other words, in our adaptation of QANA, we only replace the step
of the question’s time scope estimation. We denote such a modified
system as QANA+BiTimeBERT. We test this system on the test set
of 500 manually created implicitly time-scoped questions published
in [53]. As the number of the top 𝑁 re-ranked documents affects
the final results, we also test the effect of different top 𝑁 values. As
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Table 12: Statistics of semantic change detection datasets.
Dataset Target

Words C1 Source C1 Time
Period C2 Source C2 Time

Period
LiverpoolFC 97 Reddit 2011–2013 Reddit 2017

SemEval-English 37 CCOHA 1810–1860 CCOHA 1960–2010

Table 13: Semantic change detection results.
Model LiverpoolFC SemEval-Eng

Pearson Spearman Pearson Spearman
BERT 0.414 0.454 0.483 0.416

BERT-NYT 0.431 0.463 0.510 0.422
TempoBERT (cos_dist) [41] 0.371 0.451 0.538 0.467
TempoBERT (time-diff)[41] 0.637 0.620 0.208 0.381

BiTimeBERT 0.468 0.476 0.616 0.476

shown in Table 11, QANA+BiTimeBERT outperforms QANA for all
different 𝑁 values. For example, on top-1 document, the extended
model has a 6.67% improvement on EM and 1.42% on F1.
5.5 Semantic Change Detection & Sentence

Time Prediction
In this last section, we compare BiTimeBERT with TempoBERT
[41], a recently proposed time-aware BERT model which works
by prepending texts with timestamp and then masking the added
tokens during training, as discussed in Section 2.2. TempoBERT
hence does not utilize content time. It has been also tested only
on sentence-level corpora which does not assure its generalization
ability on other datasets or tasks that have long texts as input,
e.g., EventTime-WithTop1Doc dataset or document dating task.
We compare TempoBERT and BiTimeBERT (as well as BERT and
BERT-NYT) on the following two time-related tasks which were
used by the TempoBERT’s authors for evaluating their system [41]:
(1) Semantic change detection: This task requires determining
whether and to what extent the meanings of a set of target words
have changed over time, with the help of time-annotated corpora.
Following TempoBERT, the LiverpoolFC corpus (short-term cor-
pora) [13] and the SemEval-English corpus (long-term corpora)
[44] are used. Table 12 presents the statistics of both datasets. To
determine how well a model can detect changes in the meaning of
words over time, we measure its performance by comparing the
model’s assessment of semantic shift for each target word to the
semantic index (i.e., the ground truth). The correlation between the
two provides a measure of the model’s effectiveness in detecting
semantic change. In particular, both Pearson’s correlation coeffi-
cient and Spearman’s rank correlation coefficient are calculated. For
fair comparison, we adopt the same training hyperparameters as
TempoBERT: the learning rate and epochs number for LiverpoolFC
are 1e-7 and 1, respectively, while they are 1e-6 and 2 for SemEval-
English. However, as the corpora of sentence level seldom contain
the content temporal information for TAMLM objective, we train
BiTimeBERT using MLM for domain adaptation which is also used
in training BERT and BERT-NYT. After obtaining the trained lan-
guage models, we apply on them the method used in TempoBERT
to generate representations of target words for each time period and
to estimate the semantic change of words by measuring cos_dist
(cosine distance). Note that Rosin et al. [41] introduce also another
distance method, time-diff, tailored to TempoBERT and we also
report its results for comparison.
(2) Sentence time prediction: Unlike document dating or event
occurrence time prediction which use either long articles or event
descriptions as input, sentence time prediction task assumes pre-
dicting the writing time of short sentences. Same as TempoBERT,

Table 14: Sentence time prediction results.

Model
NYT-years

1981-2020 1987-2007 1981-1986 & 2008-2020
ACC ACC ACC

BERT 10.02 9.7 10.38
BERT-NYT 10.23 10.75 9.64
TempoBERT [41] 9.24 - -
BiTimeBERT 12.52 13.44 11.51

we utilize here the NYT-years dataset with 40 classes corresponding
to 40 years from 1981 to 2020 with 10k sentences sampled per each
year. Accuracy is used as a metric. Since 20 years are overlapping
with the corpus that we used for pre-training of BiTimeBERT, we
additionally report the accuracy scores within and outside the over-
lapped time period (i.e., 1987-2007, 1981-1986 & 2008-2020). All
models are fine-tuned for 10 epochs, with a learning rate 2e-05.

Table 13 presents the results of semantic change detection. When
considering both datasets using cos_dist, BiTimeBERT achieves the
best results with significant correlations (𝑝 < 0.005), especially on
SemEval-Eng which is a long-term corpora. In addition, we can see
that TempoBERT using its tailored time-diff method outperforms
BiTimeBERT and obtains the best performance on LiverpoolFC of
short time spans. However, compared with BiTimeBERT which
achieves relatively good results on different types of corpora using
the same cos_dist method, there is a large performance degradation
on SemEval-Eng when using time-diff. Thus, one needs to be careful
when using TempoBERT on semantic change detection, as the
corpora type (long-term or short-term) should be known in advance
to use an appropriate measuring method (cos_dist or time-diff).

Table 14 presents the results of sentence time prediction. When
considering NYT-years of entire 1987-2020, we can see that Tem-
poBERT is surpassed by BERT, while BiTimeBERT outperforms all
other models by a large margin. Moreover, for the time period out-
side the one of BiTimeBERT’s pre-training corpus, i.e., 1981-1986
& 2008-2020, BiTimeBERT outperforms BERT and BERT-NYT with
10.89%, 19.40% improvement, respectively. Therefore, despite the
fact that TempoBERT has been specifically designed for semantic
change detection, our proposed BiTimeBERT can also obtain good
results on sentence time prediction.

6 CONCLUSIONS
In this paper, we have presented a novel and effective language
representation model called BiTimeBERT designed specifically for
time-related tasks. BiTimeBERT is trained over a temporal news col-
lection through two new pre-training tasks that involve two kinds of
temporal aspects (timestamp and content time). We next conducted
extensive experiments to investigate the effectiveness of the pro-
posed pre-training tasks. The results reveal that BiTimeBERT can
offer effective time-aware representations and could help achieve
improved performance on various time-related downstream tasks.
In the future, we will investigate how to incorporate TAMLM with
TIR, as both these objectives utilize the same temporal information
extracted from content.

7 ACKNOWLEDGMENTS
This work was supported by the National Natural Science Founda-
tion of China (62076100), Fundamental Research Funds for the Cen-
tral Universities, SCUT (x2rjD2220050), the Science and Technology
Planning Project of Guangdong Province (2020B0101100002).



SIGIR ’23, July 23–27, 2023, Taipei, Taiwan Wang, et al.

REFERENCES
[1] Omar Alonso, Michael Gertz, and Ricardo Baeza-Yates. 2007. On the value of

temporal information in information retrieval. In ACM SIGIR Forum, Vol. 41. ACM
New York, NY, USA, 35–41.

[2] Omar Alonso, Michael Gertz, and Ricardo Baeza-Yates. 2009. Clustering and
exploring search results using timeline constructions. In Proceedings of the 18th
ACM conference on Information and knowledge management. 97–106.

[3] Omar Alonso, Jannik Strötgen, Ricardo Baeza-Yates, and Michael Gertz. 2011.
Temporal Information Retrieval: Challenges and Opportunities. Twaw 11 (2011),
1–8.

[4] Cristina Barros, Elena Lloret, Estela Saquete, and Borja Navarro-Colorado. 2019.
NATSUM: Narrative abstractive summarization through cross-document timeline
generation. Information Processing & Management 56, 5 (2019), 1775–1793.

[5] Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. Scibert: A pretrained language
model for scientific text. arXiv preprint arXiv:1903.10676 (2019).

[6] Klaus Berberich and Srikanta Bedathur. 2013. Temporal diversification of search
results. In Proceedings of SIGIR 2013 workshop on time-aware information access.

[7] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. arXiv preprint
arXiv:2005.14165 (2020).

[8] Ricardo Campos, Gaël Dias, Alípio M Jorge, and Adam Jatowt. 2014. Survey of
temporal information retrieval and related applications. ACM Computing Surveys
(CSUR) 47, 2 (2014), 1–41.

[9] Ricardo Campos, Alípio Mário Jorge, Gaël Dias, and Célia Nunes. 2012. Dis-
ambiguating implicit temporal queries by clustering top relevant dates in web
snippets. In 2012 IEEE/WIC/ACM International Conferences on Web Intelligence
and Intelligent Agent Technology, Vol. 1. IEEE, 1–8.

[10] Ricardo Campos, Arian Pasquali, Adam Jatowt, Vítor Mangaravite, and Alí-
pio Mário Jorge. 2021. Automatic Generation of Timelines for Past-Web Events.
In The Past Web. Springer, 225–242.

[11] Angel X Chang and Christopher D Manning. 2012. Sutime: A library for recog-
nizing and normalizing time expressions.. In Lrec, Vol. 2012. 3735–3740.

[12] Jeremy R Cole, Aditi Chaudhary, Bhuwan Dhingra, and Partha Talukdar.
2023. Salient Span Masking for Temporal Understanding. arXiv preprint
arXiv:2303.12860 (2023).

[13] Marco Del Tredici, Raquel Fernández, and Gemma Boleda. 2018. Short-term
meaning shift: A distributional exploration. arXiv preprint arXiv:1809.03169
(2018).

[14] Leon Derczynski. 2017. Automatically Ordering Events and Times in Text. Vol. 677.
https://doi.org/10.1007/978-3-319-47241-6

[15] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[16] Bhuwan Dhingra, Jeremy R Cole, Julian Martin Eisenschlos, Daniel Gillick, Jacob
Eisenstein, andWilliamWCohen. 2021. Time-aware languagemodels as temporal
knowledge bases. arXiv preprint arXiv:2106.15110 (2021).

[17] Gaël Dias, José GMoreno, Adam Jatowt, and Ricardo Campos. 2012. Temporal web
image retrieval. In International Symposium on String Processing and Information
Retrieval. Springer, 199–204.

[18] Mario Giulianelli, Marco Del Tredici, and Raquel Fernández. 2020. Analysing
lexical semantic change with contextualised word representations. arXiv preprint
arXiv:2004.14118 (2020).

[19] Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, andMingwei Chang. 2020.
Retrieval augmented language model pre-training. In International conference on
machine learning. PMLR, 3929–3938.

[20] Janghoon Han, Taesuk Hong, Byoungjae Kim, Youngjoong Ko, and Jungyun Seo.
2021. Fine-grained Post-training for Improving Retrieval-based Dialogue Systems.
In Proceedings of the NAACL 2021: Human Language Technologies. 1549–1558.

[21] Or Honovich, Lucas Torroba Hennigen, Omri Abend, and Shay B Cohen. 2020.
Machine reading of historical events. In Proceedings of ACL 2020. 7486–7497.

[22] Kexin Huang, Jaan Altosaar, and Rajesh Ranganath. 2019. Clinicalbert: Modeling
clinical notes and predicting hospital readmission. arXiv preprint arXiv:1904.05342
(2019).

[23] Adam Jatowt and Ching-man Au Yeung. 2011. Extracting collective expectations
about the future from large text collections. In CIKM 2011. 1259–1264.

[24] Adam Jatowt and Katsumi Tanaka. 2012. Large scale analysis of changes in
english vocabulary over recent time. In Proceedings of CIKM 2012. 2523–2526.

[25] Rosie Jones and Fernando Diaz. 2007. Temporal profiles of queries. ACM Trans-
actions on Information Systems (TOIS) 25, 3 (2007), 14–es.

[26] Nattiya Kanhabua and Avishek Anand. 2016. Temporal information retrieval. In
Proceedings of SIGIR 2016. 1235–1238.

[27] Nattiya Kanhabua, Roi Blanco, and Kjetil Nørvåg. 2015. Temporal Information
Retrieval. Foundations and Trends in Information Retrieval 9, 2 (2015), 91–208.
https://doi.org/10.1561/1500000043

[28] Nattiya Kanhabua and Kjetil Nørvåg. 2009. Using temporal language models for
document dating. In Joint European conference on machine learning and knowledge

discovery in databases. Springer, 738–741.
[29] Nattiya Kanhabua and Kjetil Nørvåg. 2010. Determining time of queries for

re-ranking search results. In International conference on theory and practice of
digital libraries. Springer, 261–272.

[30] Pei Ke, Haozhe Ji, Siyang Liu, Xiaoyan Zhu, and Minlie Huang. 2019. SentiLARE:
Sentiment-aware language representation learning with linguistic knowledge.
arXiv preprint arXiv:1911.02493 (2019).

[31] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[32] Dimitrios Kotsakos, Theodoros Lappas, Dimitrios Kotzias, Dimitrios Gunopulos,
Nattiya Kanhabua, and Kjetil Nørvåg. 2014. A burstiness-aware approach for
document dating. In Proceedings of SIGIR 2014. 1003–1006.

[33] Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon Kim, Sunkyu Kim,
Chan Ho So, and Jaewoo Kang. 2020. BioBERT: a pre-trained biomedical language
representation model for biomedical text mining. Bioinformatics 36, 4 (2020),
1234–1240.

[34] Xiaoyan Li andW Bruce Croft. 2003. Time-based language models. In Proceedings
of CIKM 2003. ACM, 469–475.

[35] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A
robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692
(2019).

[36] S. Martschat andM. Katja. 2018. A temporally sensitive submodularity framework
for timeline summarization. In CoNLL. 230–240.

[37] Sebastian Nagel. 2016. Cc-news. URL: http://web. archive.
org/save/http://commoncrawl. org/2016/10/newsdatasetavailable (2016).

[38] Kai Niklas. 2010. Unsupervised post-correction of OCR errors. Master’s thesis.
Leibniz Universität Hannover (2010).

[39] Marius Pasca. 2008. Towards Temporal Web Search. In SAC. 1117–1121.
[40] Alec Radford, JeffreyWu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever,

et al. 2019. Language models are unsupervised multitask learners. OpenAI blog
1, 8 (2019), 9.

[41] Guy D Rosin, Ido Guy, and Kira Radinsky. 2022. Time masking for temporal
language models. In Proceedings of WSDM 2022. 833–841.

[42] Guy D Rosin and Kira Radinsky. 2022. Temporal Attention for Language Models.
arXiv preprint arXiv:2202.02093 (2022).

[43] Evan Sandhaus. 2008. The new york times annotated corpus. LDC2008T19.
Linguistic Data Consortium, Philadelphia 6, 12 (2008), e26752.

[44] Dominik Schlechtweg, Barbara McGillivray, Simon Hengchen, Haim Du-
bossarsky, and Nina Tahmasebi. 2020. SemEval-2020 task 1: Unsupervised lexical
semantic change detection. arXiv preprint arXiv:2007.11464 (2020).

[45] Michael Stack. 2006. Full text search of web archive collections. Proc. of IWAW
(2006).

[46] Julius Steen and Katja Markert. 2019. Abstractive Timeline Summarization. In
the 2nd Workshop on New Frontiers in Summarization. 21–31.

[47] Jannik Strötgen and Michael Gertz. 2012. Event-centric search and exploration
in document collections. In JCDL. 223–232.

[48] Andrey Styskin, Fedor Romanenko, Fedor Vorobyev, and Pavel Serdyukov. 2011.
Recency ranking by diversification of result set. In Proceedings of CIKM 2011.
1949–1952.

[49] Krysta M Svore, Jaime Teevan, Susan T Dumais, and Anagha Kulkarni. 2012.
Creating temporally dynamic web search snippets. In In SIGIR 2012. 1045–1046.

[50] Giang Tran, Mohammad Alrifai, and Eelco Herder. 2015. Timeline summarization
from relevant headlines. In ECIR. Springer, 245–256.

[51] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information processing systems. 5998–6008.

[52] Jiexin Wang, Adam Jatowt, Michael Färber, and Masatoshi Yoshikawa. 2020.
Answering Event-Related Questions over Long-Term News Article Archives. In
European Conference on Information Retrieval. Springer, 774–789.

[53] Jiexin Wang, Adam Jatowt, Michael Färber, and Masatoshi Yoshikawa. 2021. Im-
proving question answering for event-focused questions in temporal collections
of news articles. Information Retrieval Journal (2021), 1–26.

[54] Jiexin Wang, Adam Jatowt, and Masatoshi Yoshikawa. 2021. Event Occurrence
Date Estimation based on Multivariate Time Series Analysis over Temporal
Document Collections. In Proceedings of SIGIR 2021. 398–407.

[55] Wenhan Xiong, Jingfei Du, William Yang Wang, and Veselin Stoyanov. 2019.
Pretrained encyclopedia: Weakly supervised knowledge-pretrained language
model. arXiv preprint arXiv:1912.09637 (2019).

[56] Hu Xu, Bing Liu, Lei Shu, and Philip S Yu. 2019. BERT post-training for review
reading comprehension and aspect-based sentiment analysis. arXiv preprint
arXiv:1904.02232 (2019).

[57] Yi Yu, Adam Jatowt, Antoine Doucet, Kazunari Sugiyama, and Masatoshi
Yoshikawa. 2021. Multi-timeline summarization (mtls): Improving timeline sum-
marization by generating multiple summaries. In In ACL 2021. 377–387.

https://doi.org/10.1007/978-3-319-47241-6
https://doi.org/10.1561/1500000043

	Abstract
	1 Introduction
	2 Related Work
	2.1 Language Models for Specific Domains
	2.2 Incorporating Time with Language Models

	3 Method
	3.1 Time-aware Masked Language Modeling
	3.2 Document Dating
	3.3 Temporal Information Replacement

	4 Experimental Settings
	4.1 Pre-training Dataset and Implementation
	4.2 Downstream Tasks
	4.3 Evaluation Metrics
	4.4 Tested Models
	4.5 Fine-tuning Setting

	5 Experimental Results
	5.1 Main Results
	5.2 Additional Analysis
	5.3 Case Study on Time-Sensitive Queries
	5.4 Application for Temporal QA
	5.5  Semantic Change Detection & Sentence Time Prediction

	6 Conclusions
	7 Acknowledgments
	References

