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Abstract. It is important to learn whether text information remains valid or not
for various applications including story comprehension, information retrieval,
and user state tracking on microblogs and via chatbot conversations. It is also
beneficial to deeply understand the story. However, this kind of inference is
still difficult for computers as it requires temporal commonsense. We propose a
novel task, Temporal Natural Language Inference, inspired by traditional natural
language reasoning to determine the temporal validity of text content. The task
requires inference and judgment whether an action expressed in a sentence is
still ongoing or rather completed, hence, whether the sentence still remains valid,
given its supplementary content. We first construct our own dataset for this task
and train several machine learning models. Then we propose an effective method
for learning information from an external knowledge base that gives hints on
temporal commonsense knowledge. Using prepared dataset, we introduce a new
machine learning model that incorporates the information from the knowledge
base and demonstrate that our model outperforms state-of-the-art approaches in
the proposed task.

1 Introduction

It is rather easy for humans to reason on the validity of sentences. Given a user’s post: “I
am taking a walk”, and a subsequent post from the same user: “Ordering a cup of coffee
to take away”, we can guess that the person is very likely still taking a walk, and has
just only stopped for a coffee during her walk. That is, the action stated in the former
message is still ongoing, thus, the first sentence remains valid. On the other hand, if the
subsequent post would be “I am preparing a dinner”, it would be highly possible that the
first message (the one about taking a walk) is no longer valid in view of this additional
evidence. This kind of inference is usually smoothly done by the commonsense of
humans.

Thanks to the emergence of pre-training models, computers have shown significant
performance in the field of natural language understanding [59]. However, it is still a
challenging task for computers to perform effective reasoning that requires commonsense
knowledge [54]. As the amount of available text information is exploding nowadays, it
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is getting more and more important for machines to achieve much better understanding
of natural language.

In this work, we propose a novel task called Temporal Natural Language Inference
(TNLI), in which we evaluate the validity of text content using an additional related
content used as evidence. Similarly to Natural Language Inference (NLI) task [55] an
input is in the form of a sentence pair (we explain more on the differences of these two
tasks in §2.5). We address the TNLI problem as a classification task using the following
two input sentences: (1) hypothesis sentence and (2) premise sentence. The first one,
the hypothesis sentence, is the one whose validity is to be judged. The second one, the
premise sentence, is following the hypothesis sentence and is supposed to provide new
information useful for classifying the hypothesis. The classification labels for the hypoth-
esis sentence are as follows: SUPPORTED, INVALIDATED, and UNKNOWN. SUPPORTED
means that the hypothesis is still valid after seeing the premise, INVALIDATED means
that the hypothesis ceased to be valid, and otherwise it is UNKNOWN.

Considering our earlier example, if we regard “I am taking a walk” as a hypothesis
and “I am preparing a dinner” as a premise, the hypothesis becomes INVALIDATED since
the user has clearly concluded her earlier action. If we consider “coffee for take away”
as a premise instead, the hypothesis would be SUPPORTED.4

The potential applications of our proposed task are as follows:
Support for story understanding & event extraction: Effective methods trained

for the proposed task can lead to better understanding of stories described in text
and potentially also more effective event extraction [72]. Reading comprehension of
stories would be improved if one incorporates a component that can reason about action
completion given the evidence provided by the following sentences. We note that this
kind of knowledge is often implicit in text.

Classification & recommendation of microblog posts: Microblog posts can be
valid for different lengths of time. In the era of information overload, users need to
select valid messages among a large number of posts, as valid ones are typically the
most relevant and important. This kind of information overload would be significantly
alleviated when they could use an option to filter out invalid posts from their timelines, or
the posts could be ranked by several factors including their estimated temporal validity.

User tracking & analysis: User tracking and analysis in social networks services
(SNS) and chats [2, 33, 1] can be enhanced based on temporal processing of user’s posts
so that the user’s current situation and action can be flagged. This could be useful for
example for selecting suitable advertisements or in emergency situations like during the
time of disasters to know the current state of users.

Chatbots: Chatbots and AI assistants are becoming recently increasingly popu-
lar [43]. However, their use is still quite limited as they cannot understand well users’
context such as their actions, goals and plans, and so on. To achieve much better commu-
nication with humans, it is necessary to develop user state-aware approach.

In addition to the proposal of a novel task, our second contribution is the construction
of dedicated dataset for the proposed task. As we especially focus on sentences that

4 Note that it is not always easy to determine the correct answer as the context or necessary
details might be missing, and in such cases humans seem to rely on probabilistic reasoning
besides the commonsense base.



Title Suppressed Due to Excessive Length 3

describe actions and relatively dynamic states that can be relevant to the aforementioned
applications, our dataset contains pairs of sentences describing concrete actions.

Finally, we also develop a new machine learning model incorporating information
from a knowledge graph as we believe that successful model requires external knowledge
about the world. Our proposed model combines the following two encoders: the first one
incorporates commonsense knowledge via pre-training and the other one is purely based
on text to jointly capture and reason with the commonsense knowledge. To develop
these encoders, we construct a new model for learning the embeddings of concepts in
knowledge bases. In particular, we employ the ATOMIC-2020 dataset [25] as an external
knowledge base.

Our main contributions can be summarized as follows:

1. We propose a novel task called, Temporal Natural Language Inference (TNLI),
requiring to identify the validity of a text content given an evidence in the form of
another content. We formulate it as a text classification problem.

2. We construct a dedicated dataset5 for our proposed task that contains over 10k
sentence pairs, and analyze its relation to Natural Language Inference (NLI) task
and NLI’s corresponding datasets.

3. We design and develop an effective new machine learning model for the proposed
task which utilizes information from commonsense knowledge bases.

4. Finally, we compare our model with some state-of-the-arts in natural language
inference task and discuss the results. We also test if pre-training using standard
NLI datasets is effective for TNLI.

2 Related Work

2.1 Temporal Information Retrieval & Processing

Temporal Information Retrieval is a subset of Information Retrieval domain that focuses
on retrieving information considering their temporal characteristics. Many tasks and
approaches have been proposed so far [1, 28, 42, 9, 27, 45], including the understanding
of story [23], temporal relation extraction [63, 18], question answering [24, 26], and
so on. White and Awadallah [69] estimated the duration of tasks assigned by users in
calendars. Takemura and Tajima [57] classified microblog posts to different lifetimes
based on features specific to Twitter such as number of followers or presence of URLs.
Almquist and Jatowt [3] examined the validity of sentences considering the time elapsed
since their creation (more in §2.5).

2.2 Commonsense Reasoning

Implicit information that humans commonly know is addressed in, what is called,
Commonsense Reasoning domain [60]. Winograd Schema Challenge [32] was one
of the earliest challenges for machines in this regard, and many other challenges and
approaches have also been proposed [49, 38, 21, 58, 36, 44, 34]. Temporal Commonsense

5 The dataset and code are available at: https://tinyurl.com/T-NLI
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is one of them, in which temporal challenges are addressed [78]. Zhou et al. [77] focused
on comparing actions such as “going on a vacation” with others like “going for a walk”
to assess which take longer, and constructed a dataset for question-answering including
this kind of estimation. We further compare our task with other related ones in §2.5.

2.3 Natural Language Inference

Recently, Natural Language Understanding (NLU) by computers has attracted a lot
of researchers’ attention. Natural Language Inference (NLI) or Recognizing Textual
Entailment is one of NLU domains, in which computers deal with input in the form of
two sentences [55], similar to our proposed task. NLI problems require to determine
that a premise sentence entails, contradicts, or is neutral to a hypothesis sentence (or
in some settings, entails vs. not entails). In the early stages of NLI work, Dagan et
al. [15] constructed a relatively small dataset. The first largely annotated dataset was
Stanford Natural Language Inference (SNLI) dataset [6], which was annotated through
crowdsourcing. After that, many NLI datasets [16, 22], including Multi-genre Natural
Language Inference (MNLI) [70] and Scitail [30], have been constructed. Notably,
Vashishtha et al. [62] converted existing datasets for temporal reasoning into NLI format,
pointing out that no NLI dataset focuses on temporal reasoning. Their task focuses on
explicit temporal description while our task tackles implicit information. The emergence
of these large scale datasets made it possible to train more complex models [55, 7].
Remarkably, state-of-the-art large-scale pre-trained models such as BERT [17] and
RoBERTa [37] demonstrated significant performance on NLI datasets, and are also used
to train multi-task models [14].

2.4 Incorporation of Knowledge Bases

Generally, NLU works make use of Knowledge Graphs (KG) or Knowledge Bases (KB)
to improve model performance [11, 40, 73]. Especially, Commonsense Reasoning works
commonly incorporate knowledge from large KBs such as ConceptNet [35, 53] and
WikiData [64] in their architectures [48, 76, 75]. However, only a few works in NLI
attempt to incorporate KGs into models [8, 29]. Wang et al. [66], for example, improve
performance on Scitail using knowledge in ConceptNet.

2.5 Comparison with Related Tasks

Similar to NLI, our work addresses a text classification problem, in which two sentences
form an input. However, we focus on neither entailment nor contradiction but the validity
of sentences (see Tables 3 and 4 for comparison).

The NLI dataset constructed by Vashishtha et al. [62] includes temporal phenomena.
However, their task addresses explicit descriptions of temporal relations such as duration
and order, while we focus on implicit temporal information that is latent in sentences.
Temporal Commonsense task [77] includes implicit temporal information, too. The prob-
lem that the task deals with is reasoning about event duration, ordering, and frequency in
a separate manner. However, our approach requires a more comprehensive understanding
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of temporal phenomena through a contrastive type inference. Also, their task is posed
as a question-answering problem while ours is formalized as an NLI type problem.
Almquist and Jatowt [3] also worked on the validity of sentences. Unlike their work,
we use premises as the additional source instead of the information on the elapsed time
from sentence creation as in [3], since, in practice, in many situations, additional text is
available (e.g., sequences of tweets posted by the same user, or following sentences in a
story or novel). Table 1 compares our task with the most related ones.

Table 1: Comparison our work with related tasks.
Task Task Type Temporal Input Output
McTaco [77] Question Answering ✓ source, question,

answer candidates correct answers

NLI [20, 12] Classification sentence pair
3 classes

(entailment,
contradiction,

neutral)
Validity Period
Estimation [3] Classification ✓ sentence

5 classes
(hours, days, weeks,

months, years)

TNLI (Proposed Task) Classification ✓ sentence pair
3 classes

(SUPPORTED,
INVALIDATED,

UNKNOWN)

3 Task Definition
We first provide the definition of our task, in which a pair of sentences p = (s1, s2) is
given, where s1 and s2 are a hypothesis and a premise sentence, respectively.6 The task
is to assign one of the following three classes to s1 based on the inference using the
content of s2:

c ∈ {SUPPORTED, INVALIDATED, UNKNOWN} (1)

Here, the SUPPORTED class means that s1 is still valid given the information in s2. The
INVALIDATED class, on the other hand, means that s1 ceased to be valid in view of s2.
The third one, UNKNOWN class, indicates that the situation evidence is not conclusive or
clear, and we cannot verify the validity of the hypothesis.

4 Proposed Method

We discuss next our proposed approach for content validity estimation task. We hypoth-
esize that the task cannot be successfully solved without the incorporation of external
knowledge given the inherent need of temporal commonsense reasoning. Therefore,
we first attempt to find the useful knowledge base to provide knowledge of temporal

6 Note that s1 and s2 may have temporal order: ts1 ≤ ts2 , where tsid (id = 1, 2) is the creation
time (or a reading order) of a sentence sid. This may be for example in the case of receiving
microblog posts issued by the user (or when reading next sentences of a story or a novel).
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properties. We then propose a new model by combining an encoder that incorporates
information from this knowledge base and a text encoder that uses only text data. The
output of the encoder using the knowledge base and the text encoder are combined and
used as input to the softmax classifier. Figure 1 shows the model outline.

Fig. 1: Outline of our approach.

4.1 Encoding Knowledge

One of the key components of the proposed model is the knowledge encoder.

Knowledge Base We have explored different knowledge bases (KBs) for our objective
including FrameNet [19], WikiHow [31], Howto100m [39], and VerbNet [52]. We
concluded that ATOMIC-2020 (An ATlas Of MachIne Commonsense) [25] is the most
suitable KB to achieve our goal thanks to its temporal commonsense knowledge and
relatively large scale (1.33M commonsense knowledge tuples and 23 commonsense
relations).

ATOMIC [51] is the predecessor KB of ATOMIC-2020 designed for commonsense
reasoning that contains nine different if-then relations such as Cause, Effect, Intention,
Reaction, and so on. Most of the entities in this KG are in the form of sentences or
phrases. COMET [5] is a language model trained with ATOMIC and ConceptNet in order
to generate entities that were not in the ATOMIC dataset. Then, ATOMIC-2020 adds
new relations in comparison to ConceptNet and ATOMIC. The new relations include
“IsAfter”, “IsBefore”, “HasSubevent”, and so on, which represent the relations between
events. For example, “PersonX pays PersonY a compliment” and “PersonX will want
to chat with PersonY” are sentences belonging to the if-then relation in Atomic-2020,
while “PersonX bakes bread” and “PersonX needed to buy ingredients” is an example of
a pair of sentences connected by the “IsAfter” relation.
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Fig. 2: TransE model for sentences.

TransE We now briefly explain TransE [4] which we adapt for the purpose of KB
relation embedding. TransE is a model for learning embeddings of KBs represented in
the triple form of entities and relations <head entity, relation, tail entity>. Relations are
considered to be translations in the embedding space. TransE learns embedding using
the following loss function, which is an operation between entities and relations as in
skip-gram [41], where head entity + relation = tail entity:

L =
∑

(h,l,t)∈S

∑
(h′,l,t′)∈S′

(h,l,t)

[γ + d(h+ l, t)− d(h′ + l, t′)]+, (2)

where [x]+ denotes the positive part of x, γ is a margin parameter, d is the distance
function, while h, l, and t are the embeddings of head entity, relation label, and tail
entity, respectively. In addition, S is a set of positive examples, while S′ is the set of
negative examples.

TransE for Sentences Since the entities in the ATOMIC-2020 dataset are mostly in
the form of short sentences, it is difficult to train with original TransE as the number of
potential entities is very large, and inference for sentences that are not in the training
data is not possible. To solve this problem, we adapt the TransE model for sentences.
First, we compute the sentence vector corresponding to each entity in the KG using
Sentence-BERT (SBERT) [50]. We then train the weights W for the sentence vectors
and the relation embedding Er using Margin Based Ranking Loss as in TransE. Here,
the weights of SBERT are fixed and not trained, so that if the data is not in the training
set, the embeddings of similar sentences will remain similar. Figure 2 shows the model
structure. Since information related to time is crucial in our work, we only use “IsAfter”
and “IsBefore” ATOMIC-2020 relations.



8 T. Hosokawa et al.

Other Translating Embedding Models We also explore other variants of translating
embedding models: TransH [67] and ComplEx [61].

For TransH model, we adopt the same model as TransE for sentences except for an
additional module for projection. To project into the hyperplane of each relation, we use
relation-specific projection matrix as original TransH does.

For ComplEx model, we add a linear layer after sentence embedding so that the
model has two different parallel linear layers to transform sentence embeddings, where
one represents real part, and the other is for imaginary part.

Encoder with Knowledge We create an encoder for the downstream task using the
ATOMIC-2020 pre-trained embeddings of the TransE model. In this encoder, the output
is the concatenation of the embeddings of the hypothesis and of premise sentence.

4.2 Combined Model

The entire model for the proposed downstream task consists of text encoder, knowledge
encoder, and a classification layer on top of them. Since the dimensions of the pre-
trained embeddings and the output of the text encoder are not the same, each output is
linearly transformed to make the dimensions equal. The two vectors obtained in this way
are compared and combined, and then linearly transformed. We use the concatenation,
difference, and element-wise product for combination:

H = Linear(Ht;Hk;Ht −Hk;Ht ⊙Hk), (3)

where Ht is the output of text encoder, Hk is the output of knowledge encoder, and ⊙
denotes element-wise multiplication. The obtained output is linearly transformed, and
then fed into a softmax classifier to decide the validity class.

5 Dataset

5.1 Dataset Construction

To create our dataset, we need hypotheses, premises, and ground truth labels. As men-
tioned before, we decided to focus on sentences similar to the typical setup of NLI task.
As the hypothesis sentences we used randomly selected 5,000 premise sentences from
SNLI dataset7. These sentences were originally taken from the captions of the Flickr30k
corpus [74]. We conducted clustering over all the collected sentences and sampled equal
number of sentences from each cluster to maintain high variation of sentence topics.
For this, we first employed BERT [17] to vectorize each word, and then vectorized the
sentences based on computing the arithmetic mean of word vectors. For clustering, we
employed k-means to group sentence vectors into 100 clusters. We then extracted up to
50 sentences from each cluster with uniform probability and used them as the source of
the hypotheses. Premise sentences and labels were collected using crowdsourcing with

7 SNLI dataset is licensed under CC-BY-SA 4.0.
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Table 2: Average sentence length in our dataset.
Average Variance

hypothesis 11.4 19.4
premise 8.9 10.8
invalidated 8.4 8.6
supported 9.3 10.7
unknown 8.9 12.7

the Amazon Mechanical Turk8. For each hypothesis, we asked two crowdworkers to
create a sentence corresponding to each label. To avoid sentences that are simply copied
or modified with minimum effort, we accepted sentences only when 40% or more words
were not overlapped with the corresponding hypothesis. Otherwise, crowdworkers could,
for example, simply change one word in order to claim the added trivial sentence is of
a given class (e.g., SUPPORTED class). Since the dataset should involve non-explicit
temporal information and we wanted to make sure that the workers carefully consider
it, we also asked for providing a description of the estimated time during which the
hypotheses sentences could have been realistically valid, although this information was
not included in the final dataset. In total, about 400 workers participated in the dataset
creation.

Since we found out some spamming and dishonest activity, we later manually verified
the validity of all the obtained data, corrected the grammar and words, as well as we
manually filtered poor-quality, noisy, offensive, or too-personal sentences. For example,
removed sentences included instances in which a single word was substituted with a
different one that has the same or similar meaning or different case such as replacing
“mother” with “MOM.” We removed in total 19,341 pairs of sentences.

5.2 Dataset Statistics

The final dataset includes 10,659 sentence pairs. Since the previous research has pointed
out that the number of words in sentences in some NLI datasets varies significantly
depending on their labels [30], we examined the average number of words in our dataset.
Table 2 shows the statistics indicating that the average number of words in our dataset
does not change significantly for different labels. The variance tends to be higher,
however, for the UNKNOWN class.

Note that the number of sentence pairs belonging to each class is the same (3,553).
Table 3 shows some examples of the generated data, while, for contrast, we also show
example sentences of NLI task in Table 4.

8 https://www.mturk.com/
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Table 3: Example sentences of TNLI task in our dataset.
Hypothesis Label Premise
A woman in blue rain boots is eating
a sandwich outside.

INVALIDATED She takes off her boots in her house.

A small Asian street band plays in a
city park.

SUPPORTED Their performance pulls a large crowd
as they used new tunes and songs today.

A man jumping a rail on his skateboard. UNKNOWN His favorite food is pizza.

Table 4: Example sentences of NLI task from SNLI dataset (borrowed from SNLI
website: https://nlp.stanford.edu/projects/snli/ ).
Hypothesis Label Premise

A man is driving down a lonely road. Contradiction
A black race car starts up in front of
a crowd of people.

Some men are playing a sport. Entailment A soccer game with multiple males
playing.

A happy woman in a fairy costume holds
umbrella. Neutral

A smiling costumed woman is holding
an umbrella.

6 Experiments

6.1 Experimental Settings

In our experiments, we perform 5-fold non-nested cross-validation for all the compared
models. The batch size is 16, and the learning rate is determined by the performance
on the validation fold chosen from the training folds among 0.005, 0.0005, 0.00005.
For all the models, the optimal value was 0.00005. We evaluate our approach with
accuracy, the percentage of correct answers, which is the most relevant metric and widely
used for NLI task. We compare our proposed approach with the following four models:
BERT (bert-base-uncased) [17], Siamese Network [10], SBERT [50] Embeddings with
Feedforward Network, and Self-Explaining Model [56]. Except for ones including the
self-explaining model, we train the models with cross-entropy loss.

The architecture of the Siamese Network is similar to that of Bowman et al. [6]
using the 8B version of GloVe [47] for word embedding and multiple layers of tanh. For
SBERT with Feedforward Network, each layer has 500 dimensions and ReLU activation
and dropout. The number of hidden layers on the top of SBERT equals to 3, and the
output layer is a softmax classifier. The dropout rates are 75%.

The Self-Explaining [56] is a model with an attention-like Self-Explaining layer on
top of a text encoder (RoBERTa-base [37]), and it achieves state-of-the-art results on
SNLI. The Self-Explaining layer consists of three layers: Span Infor Collecting (SIC)
layer, Interpretation layer, and an output layer.

For testing the proposed architecture, we experimented with the two types of contex-
tual encoders: Siamese Network and Self-Explaining model. The dimensionality of the
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entity embedding was 256, and the combined embedding was linearly transformed to
128 to match the dimensionality of each encoder. We trained the entity embeddings of
Bordes et al. [4] with a learning rate of 0.001.

We implemented the models using PyTorch [46] with HuggingFace’s transform-
ers [71] and we conducted our experiments on a machine equipped with GPU.

6.2 Experiments with NLI Pre-Training

Generally, pre-training with NLI datasets improves accuracy in many downstream
tasks [13]. As there is certain degree of relevance between our proposed task and NLI,
we first experimented with pre-training selected models using the NLI datasets and then
fine-tuning them on the proposed task. The datasets we used are the training sets of
SNLI 1.0 and MNLI 0.9, which contain 550,152 and 392,702 examples, respectively.
We mapped SUPPORTED to the entailment class of NLI, INVALIDATED to contradiction,
and UNKNOWN to neutral.

Table 5 shows the results obtained by NLI pre-training, indicating that the NLI data
has some relevance to our proposed task and can improve accuracy as it improves the
results for Siamese network. However, when we use the Self-Explaining model, which
is an already pre-trained model, we did not observe any improvement. This indicates
that NLI datasets include effective information, yet it can likely be learned from general
corpus, especially when using RoBERTa [37].

Table 5: NLI pre-training results in Siamese Network and Self-Explaining Model.
Model Accuracy
Siamese 0.715
+SNLI 0.756
+MNLI 0.757
Self-Explaining 0.873
+SNLI 0.867
+MNLI 0.535

6.3 Incorporating Common-sense Knowledge

Table 6 shows the main experimental results. Among the compared models, the Self-
Explaining model achieves the best accuracy. BERT, on the other hand, gives the worst
results. We also observe that training of BERT is unstable as also pointed out in [17].

The incorporation of commonsense knowledge improves the accuracy in both the
Siamese and Self-Explaining cases. While it can significantly improve the performance
for the case of Siamese Network, it does not help much for Self-Explaining model.
Self-explaining uses RoBERTa model which has been trained on larger data and has been
carefully optimized, while other models use standard BERT. This might affect the results.
In general, we believe that adding commonsense data through the architecture that we
have proposed is a promising direction for TNLI task that calls for exploration of more
sophisticated commonsense reasoning and more extensive datasets. This conclusion is
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also supported by the analysis of the confusion matrices shown in Figure 3. Incorporating
TransE to Siamese net helps to more correctly determine SUPPORTED and UNKNOWN
classes (improvement by 28% and 6.5%, respectively), while only slightly confusing the
INVALIDATED class (decrease of 1.4%).

Table 6: Results on TNLI task.
Model Accuracy
Siamese 0.715
SBERT + FFN 0.806
BERT 0.441
Self-Explaining 0.873
Siamese+TransE 0.784
Self-Explaining+TransE 0.878

Fig. 3: Confusion matrices for TNLI prediction task of Siamese network (left) and
Siamese network with TransE (right). The horizontal axis corresponds to the prediction
(xP ) and vertical one to gold labels (xG). The left (upper) blocks are INVALIDATED,
middle ones are SUPPORTED, and right (bottom) ones are UNKNOWN.

6.4 Testing Different Knowledge Embedding Approaches

Finally, we explored different approaches of translating embedding models in addition to
TransE. Table 7 shows the results of TransE variants combined with the Self-Explaining
model. As it can be seen, the loss for pre-training does not go down in TransH [67] and
ComplEx [61]. As the loss remains high, the accuracy with the proposed downstream
task is also lower, indicating that the proposed architecture requires simpler way to
construct the knowledge-based embeddings for TNLI because TransH and ComplEx are
more complex models than TransE. Another possibility is that the other models were
not supplied with sufficient knowledge to properly benefit from their more complex
architectures.
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Table 7: Results of TransE variants used with Self-Explaining model on TNLI task.

Model Pre-Train Loss Accuracy
TransE 0.19 0.878
TransH 0.48 0.868
ComplEx 1.24 0.856

7 Conclusion & Future Work

Computational processing of non-explicit temporal information in natural language still
poses many challenges. In this work, we proposed a novel task for reasoning on the
validity of sentences based on additional evidence and we trained a new model with an
embedded knowledge base for this task. The motivation behind our idea is that humans
can judge the temporal validity of a sentence using their commonsense, and our goal is
to enable such reasoning ability for machines.

To achieve this goal, we first formally defined the task, constructed a dedicated
dataset, and trained several baseline models. In addition, we proposed a new method of
knowledge base embedding for sentences and a machine learning model that incorporates
it. We believe that this work can contribute to our understanding of how to rely on
knowledge bases that contain sentences as entities and of how to further improve the
accuracy of TNLI task. We have also experimented with popular NLI datasets to answer
a question on whether these can be useful for the proposed task.

Extending the dataset is one of our future goals. Our current work focused on
sentences with relatively dynamic descriptions based on envisioned applications in
microblogging. However, for more applications and training more robust models, it is
necessary to construct datasets that also contain other forms of descriptions. More data,
regardless of type, would be also necessary for larger-scale and less-biased training.

One way to achieve this would be to consider conversion methods from other datasets,
as some NLI datasets such as Scitail and QNLI [68, 16, 65] have already employed them.
Multi-modal datasets that include videos as well as their captions could be candidates
for this. Another future direction is to extend the proposed task itself. More specifically,
the timestamp of the premise sentences can be used as an additional signal to identify
the validity of hypotheses sentences [3] in addition to judgments based on the content
of premise sentences. This would lead to a more general task and a higher number of
potential applications. It would be possible to address the cases where not only additional
content is available as evidence for reasoning on the hypothesis’s validity but also the
time gap that elapsed from its statement is utilized (e.g., when using both the content
and timestamps of user messages/posts or utterances). Therefore, the re-formulation of
our task with added time information and the construction of a corresponding dataset are
also in our plans. Finally, a further future work may focus on automatically generating
premise sentences that would move their hypotheses into a required validity class to
obtain the desired indication of action’s completion or continuation.
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