
A Survey of Automatic Text Summarization using Graph Neural Networks

Marco Ferdinand Salchner
marco.salchner@student

.uibk.ac.at
Department of Computer Science,
University of Innsbruck, Austria

Adam Jatowt
adam.jatowt@uibk.ac.at

Department of Computer Science &
Digital Science Center,

University of Innsbruck, Austria

Abstract

Although automatic text summarization (ATS)
has been researched for several decades, the
application of graph neural networks (GNNs)
to this task started relatively recently. In this
survey we provide an overview on the rapidly
evolving approach of using GNNs for the task
of automatic text summarization. In particular
we provide detailed information on the func-
tionality of GNNs in the context of ATS, and
a comprehensive overview of models utilizing
this approach.

1 Introduction

The advent of the internet has led to an explosion in
the amount of textual information available online.
The extensive availability of textual information
paired with a need to quickly understand it has
led to major efforts in the field of automatic text
summarization (ATS). For a comprehensive review
and survey of ATS as a task we recommend a recent
survey by El-Kassas et al. (2021).

The goal of ATS is to produce a concise, correct
and fluent summary of a given text. Although this
definition is intuitively understandable, there is no
commonly agreed upon formal definition for these
qualities. This is in part due to the difficulty of the
task itself as producing a summary with the above
properties is challenging, even for humans.

Although the field of ATS has made major steps
forward, generally, we differentiate between two
basic approaches to the task of ATS. The first being
extractive ATS and the second being abstractive
ATS. Extractive ATS involves extracting text spans
from the original document such that a summary
is generated. Thus the main challenge consists in
identifying useful spans of text from the original
document. This approach is popular as it elimi-
nates the non-trivial task of generating factually
correct and coherent sentences. Abstractive ATS
on the other hand involves the challenging task of
generating novel sentences for a summary. Despite

impressive advancements, generating factually cor-
rect and fluent sentences is still a major challenge
in ATS (Kryściński et al., 2020). In addition to the
above, one differentiates between the task of single-
document and multi-document summarization.

1.1 Why graph neural networks ?
Contemporary solutions to the task of ATS suf-
fer from a number of issues, chiefly an inconsis-
tent evaluation protocol and, somewhat, a lack of
progress, as noted by Kryściński et al. (2019). In
recent years GNNs have been successfully applied
to a number of downstream NLP tasks such as clas-
sification (Liu et al., 2020b) (Zhang et al., 2020b)
and translation (Xu et al., 2021) (Yin et al., 2020).
Although GNNs may not be able to solve all prob-
lems related to the task of ATS, we believe that
they can at least give a new perspective to this task.
Generally GNNs bring a number of advantages to
ATS which we believe to be significant enough to
warrant further research, and this survey. In partic-
ular we want to highlight the following aspects of
GNNs:

• Scalability and Flexibility. A vast number of
ATS models are based on BERT (Devlin et al.,
2019). However, the computational com-
plexity of BERT-based ATS models grows
quadratic with the input length; due to the self-
attention operation. This fact renders them im-
practical for long, or even medium sized text
documents. Recently some work has been
done in order to circumvent this limiting fac-
tor (Ding et al., 2020) (Zhang et al., 2021). In
contrast, GNNs can scale by their nature to
graphs of thousands of nodes and more. This
is in part due to the linear scaling of the mem-
ory cost with regards to the input size. The
total memory cost of a GNN model depends
on the size of the graph, the number of lay-
ers and the feature vector size of the nodes
present. Formally, for L layers and an input

of N nodes with each node’s feature vector
being of size H the memory complexity is
O(LNH). But even for very large graphs on
the scale of millions of nodes one can utilize
GNNs. This can be achieved using methods
such as neighbour sampling or distributing the
graph over multiple GPUs, as done for exam-
ple by Jia et al. (2020b). We recommend the
paper by Li et al. (2021) for insights as to how
one can train large and very deep GNNs. As
the input of a GNN is a graph, the input can
vary in size, therefore GNNs are also able to
cope with changing text sizes and structures.
Both of these aspects combined allow GNNs
to produce summaries which are not restricted
by hard-coded limits related to input or output
size.

• Understanding and Explainability. It is of-
ten difficult to understand why a model arrived
at a certain conclusion. Additionally it is of-
ten difficult to see how the model aggregates
information. This is not the case with GNNs,
as with the help of methods such as GNN Ex-
plainer (Ying et al., 2019) one can understand
which nodes were used by the model to reach
its output. This removes a layer of the black-
box magic present in many current non-GNN
models. We recommend the survey by Yuan
et al. (2020) for an overview of methods for
generating explanations for GNNs.

1.2 Related Surveys

As the application of GNNs to ATS is rather novel,
to the best of our knowledge there is only one sur-
vey on the topic. The survey by Luo et al. (2020)
gives an introduction to the topic. However, it does
not provide much detail on GNNs in the context of
ATS, nor does it cover all models in the space with
a taxonomy.

As for GNNs themselves, there exists a large
number of surveys on GNNs as a technology. In
particular, we want to highlight the surveys by Wu
et al. (2020b) and Zhou et al. (2020) which provide
a general overview on GNNs and their applications
in different fields. The survey by Abadal et al.
(2021) provides more technical and theoretical de-
tails on GNNs. The survey by Wu et al. (2021a) is
of particular interest as it focuses on the usage of
GNNs for NLP as a domain. Additionally, we want
to note here the survey by Wu et al. (2020a) on the
usage of GNNs in recommender systems and the

review by Malekzadeh et al. (2021) on the usage of
GNNs for text classification.

For a more theoretical approach we point the
reader to the analysis by Xu et al. (2018) which
establishes a number of important theoretical
properties for GNNs. An analysis of the Vap-
nik–Chervonenkis (VC) dimension of GNNs was
performed by Veličković et al. (2018).

In general, the contributions of our survey are as
follows:

1. We provide a detailed explanation of GNNs
in the context of ATS.

2. We introduce a simple taxonomy for GNN
models used for ATS.

3. We provide a comprehensive overview of in-
novative GNN models for ATS and discuss
further directions for future research.

The rest of survey is structured as follows. First
we will give a comprehensive explanation of GNNs
in the context of ATS. Next, we will explore a num-
ber of interesting and innovative models. Finally,
we will finish with a conclusion and an outlook on
the future usage of GNNs for ATS.

2 Graph Neural Networks

Graph based methods for ATS are not a new inno-
vation, with methods such as TextRank (Mihalcea
and Tarau, 2004) being first presented in the early
2000s. In fact, the core idea of early graph-based
approaches such as TextRank is similar to the one
used by GNNs designed for the ATS task. The
idea is to encode the structural and semantic infor-
mation contained within a text document into an
explicit form with the help of a graph.

Deep learning has by now become a com-
mon tool for solving tasks throughout many
domains, with various end-to-end paradigms
such as recurrent-neural-networks (RNNs) or
convolutional-neural-networks (CNNs) emerging
as versatile and powerful tools. In particular deep
learning has shown extraordinary power for data
which is Euclidean in nature. As an example, im-
ages can be represented as regular grids in Eu-
clidean space. Using such a representation CNNs
are able to extract meaningful local representations
with the help of convolution. However, for many
domains and applications such a representation is
often either inconvenient or not even directly possi-
ble. The most obvious example being the field of

chemistry in which molecules should be modeled
as graphs. The complexity of translating such com-
plex data into existing deep learning paradigms has
led, in part, to the development of GNNs which
attempt to leverage the power of deep learning for
non-Euclidean data.

2.1 Defining the Graph

The first step of developing a GNN involves defin-
ing and designing the graph structure to be used.
Formally a graph is defined as G = (V,E) where
V is a set of nodes, and E a set of edges. Let
vi ∈ V denote a node; then each edge e ∈ E is
defined as ei,j = (vi, vj), that is pointing from
node vi to node vj . In addition to that for a graph
with n = |V | nodes and m = |E| edges a feature
matrix X ∈ Rn×d is defined where each node i
carries a feature vector xi ∈ Rd. Note that d de-
notes the dimension of the feature vector. This
encodes the information for the structure repre-
sented by the node. Often it is also important to
encode specific information for the edge of two
nodes. For this we additionally define an edge fea-
ture matrix Xe where Xe ∈ Rm×c with each edge
e between nodes i and j carrying an edge feature
vector wi,j ∈ Rc where c denotes the dimension of
the edge feature vector.

Using the above definitions there are two com-
mon scenarios, either the data is inherently struc-
tured or inherently unstructured. In the first case,
a direct translation into the above structure is pos-
sible, although additional information may be en-
coded by the designer. For example in knowledge
graphs or molecule simulations such a direct trans-
lation would be possible, as the data itself already
forms a valid graph, only the feature vectors would
have to be engineered in an appropriate way. In
the second scenario the data implicitly contains a
graph-like structure, as is the case for ATS. Natural
language text contains structure but that structure
is not directly available as a graph. Simplistically
one could consider text as a linear graph, that is
each sentence is a node and all sentences following
each other are connected with edges. However, this
would not expose all the possible information hid-
den, as text implicitly contains much structural and
semantic information, both of which can explicitly
be modeled with the help of a graph.

A common scenario for ATS is that the text
is encoded into the graph using word nodes and
sentence nodes. The above definition does not al-

low such an option as it assumes an homogeneous
graph, that is each node’s feature vector is equal in
dimension. However, for ATS and many other tasks
heterogeneous graphs are more common. This is
due to the fact that heterogeneous graphs allow
to include different types of structures within the
same graph. However, all of this is not an issue
as one can define a feature matrix X for each type
of node that exists within the graph. In the case
of ATS with word and sentence type nodes one
would define Xw ∈ Rm×dw as the feature matrix
for all word nodes and Xs ∈ Rn×ds as the feature
matrix for all sentence nodes with dw being the
dimension of the word node feature vectors, and
ds representing the dimension of sentence node
feature vectors.

For ATS it is also sometimes useful to utilize
the design space of directed vs. undirected edges.
The choice of directed vs. undirected edges allows
to explicitly encode structural information. For
instance, one can explicitly encode the order of
words or sentences with directed edges.

2.2 Defining the Neural Network

There are three ways in which GNNs differ from
more conventional neural networks, the input, the
output and the way information is aggregated
within the network. The input is the above de-
scribed graph.

The output and associated loss function are in
the case of GNNs bound to the structure of the data
i.e. the graph. Generally there are three levels of
output possible, namely, on the node level, on the
edge level and on the graph level. Both node and
edge level output involve predictions or classifica-
tions on their respective components of the graph;
additionally, in the case of edge level output, one
can pose the task of predicting the edge itself. On
the graph level one can pose the task of predicting
subgraphs or perform graph segmentation. In the
context of ATS, the most direct output and loss
formulation consist in predicting binary inclusion
labels on nodes representing sentences, or phrases,
using a cross-entropy loss.

The way information is aggregated is usually
done through either spatial convolution or spectral
convolution. The basic idea of spatial convolu-
tion involves extending the well-known convolu-
tion operator to graph structures, whereas spectral
convolution is based on graph signal processing.
In recent years spatial convolution has become a

Σ
α01 * m01

α02 * m02

α03 * m03

x3

x1

x2

x0

x1

Linear Layer

α01

Σ
m01

m02

m03

x3

x1

x2

Figure 1: Comparison of spatial convolution (above)
and GAT (below) over the node zero with feature vector
x0. In particular, the attention scores α in the GAT
attenuate the messages received and are obtained by a
learnable linear layer of the two nodes involved in the
message exchange.

popular approach and is the preferred approach for
GNNs for ATS due to the flexibility and efficiency
it offers. More specifically, in terms of efficiency,
spectral convolution involves either computations
over the entire graph or eigenvector computations.
None of which are necessary for spatial convo-
lution; additionally, spatial convolution does not
assume a fixed graph structure, allowing better gen-
eralization. In addition to this the locality of the
spatial convolution operation also allows it to be
performed in batches of nodes, instead of the entire
graph. This is especially relevant for large graphs,
or, in the context of this paper, large input texts.

The setup described thus far implicitly assumes
that the GNN performs extractive summarization.
This is in fact the case and for what we will later
define as standalone GNNs i.e. GNNs that are
not part of a larger system. No purely abstractive
approaches have so far been developed, to the best
of our knowledge.

2.3 Spatial Convolution and Message Passing

One can view spatial convolution as used in GNNs
as a generalization of the convolution used in neu-

ral networks such as CNNs. As an example, in the
case of images, one can imagine 2D convolution as
being applied to a regular grid of nodes where each
node represents a pixel in the image. The resulting
2D convolution applied to one target node is then
the weighted average of node (pixel) values of the
neighbours of the target node. Generalizing this
idea to a non-regular grids leads to spatial convo-
lution. However, different to images and regular
grids, in graphs, the neighbours of each target node
are unordered and can vary in number and their
feature vector representation. The major challenge
with this extension consists therefore in dealing
with the unordered and inconsistent neighbourhood
sizes inherent to homogeneous and heterogeneous
graphs, with an additional challenge being posed
by the differing feature vector representations in
heterogeneous graphs.

Directly translating the above description of con-
volution into a mathematical formulation leads to
a valid information propagation scheme. However,
such a description suffers from scalability issues
due to it directly operating over the entire graph.
As such modern GNNs use, what is commonly
referred to as, message passing. In practice, this
means that nodes within the graph exchange mes-
sages (perform convolutions) with their neighbours
for a number of iterations. Thereby the network is
able to diffuse information throughout the graph.
Consequently, the more iterations, the further out-
wards information is propagated throughout the
graph. In the terminology of CNNs one would say
that the more message passing iterations, the larger
the receptive field of the convolution. Formally,
one can define message passing (Grattarola and
Alippi, 2021) for each time step t as two equations:

mt+1
i,j = ϕ(xti, x

t
j , w

t
i,j), ei,j ∈ E (1)

This first equation describes how messages are
generated. A differentiable function ϕ generates
messages m for each edge which connects nodes
using the node features and edge feature present.

xt+1
i = ψ(xti, ρ({mt+1

i,j : ei,j ∈ E})) (2)

The above equation is the core of the message
passing framework and describes how each node
feature is updated. The first part consists in the
application of a permutation-invariant reduction
function ρ. This function aggregates all incom-
ing messages to a node. Then another differen-

tiable function ψ combines the reduced messages
received with the previous state. Using these two
equations one can utilize message passing for learn-
able layers.

The convolution layer for a GNN is then de-
fined with a learnable weight W such that the
message per edge is mt+1

i,j = xtj and the aggre-
gation is the normalized sum of messages, i.e.
xt+1
i = σ(bt +

∑
mi,j∈M(i)

1
cj,i
mt+1

i,j W
t) where

M(i) represents the set of messages received by
node i, σ is the activation function, b is the bias,
and cj,i is an appropriate scaling factor, e.g., the
square root of the node degree. Note how it is im-
portant for the reduction function, in this case a
sum function, to be permutation-invariant as other-
wise GNNs could not handle the unordered nature
of graphs.

The above presented convolution layer does
not allow the model to filter unimportant neigh-
bours. Inspired by the attention mechanism pop-
ularized by transformer networks (Vaswani et al.,
2017), graph attention networks (GAT) (Veličković
et al., 2018) assign attention scores to each neigh-
bour. A schematic depiction of the two variants
of spatial convolution can be seen in Figure 1
with GAT depicted on the lower part of the fig-
ure. The introduction of attention scores to the
spatial convolution allows the model to explicitly
assign importance to certain nodes and their mes-
sages. Just as in transformers GAT is formulated
with multi-head attention. The modification to
the previously presented convolution layer follows
closely the common attention formulation. For-
mally, xt+1

i =∥K σ(bt+
∑

mi,j∈M(i) αi,jm
t+1
i,j W

t)
where αi,j is the attention score between node i
and node j and K denotes the number of concate-
nated heads. The attention scores are computed
with ri,j = LeakyReLU(aT [Wxti ∥Wxtj]). This
score is then normalized to obtain the attention
score per edge αi,j = softmaxi(ri,j). We want to
highlight here a recent development which Brody
et al. (2021) simply denote as GATv2. Their main
improvement aims at the fact that in the above
calculation both learnable parameters a and W ef-
fectively fold into a single linear layer, thus the
expressive power of the layer is less than what
it could be. The fix introduced by GATv2 pulls
the two parameters apart, thus achieving more ex-
pressive power while not increasing computational
complexity. Taking the above description the at-
tention score for GATv2 is modified as follows

ri,j = aTLeakyReLU([Wxi ∥ Wxtj]). In both
synthetic and real datasets this modification shows
superior performance, which is supported by a the-
oretical analysis of the authors.

There are numerous modifications and exten-
sions to the basic convolution presented here. How-
ever, for ATS models, GAT layers are dominating
as the workhorse for most models. The reasoning
for their dominance can be explained by the similar
success that attention transformers have had in con-
ventional neural networks for AST. We expect that
GATv2 will continue this trend as it is an attractive
and simple improvement for the currently domi-
nating GAT. Although the authors of GATv2 note
that it is not yet entirely clear which tasks would
benefit the most from the usage of GATv2 over
GAT, which will require more research and models
to use GATv2.

In ATS the graphs used are in nearly all cases
not homogeneous. However, the equations pre-
sented here do not work for heterogeneous graphs.
The solution for this problem involves defining
one convolution layer for each node type combina-
tion occurring within the graph. In the case of the
already discussed sentence and word node graph
there would be four possible combinations of types,
and four convolution layers which would have to
be defined if the graph were fully connected.

Convolution is a central aspect of GNNs, but
pooling also presents an important and common op-
eration, especially whenever GNNs are used jointly
with other models. Pooling in GNNs is achieved by
generating a global representation of the graph, or
a subset of the graph, by pooling together features
of nodes. This is usually done with some function
f where f is commonly the mean, max or sum.

We want to explicitly point out to the reader that
the construction of GNNs does not require spe-
cial datasets. All GNN models for ATS use the
common benchmark single-document and multi-
document summarization datasets such as DUC
2004 or CNN/Dailymail. The only requirement
for any ATS, or textual dataset, is for the designer
to find an appropriate way of encoding sentences,
words, subwords etc. into feature vectors, and find-
ing a sensible way of connecting them.

3 Graph Neural Network Models For
Automatic Text Summarization

The current state of research clearly shows that the
usage of GNNs for ATS follows one of two patterns,

ATS GNNs

Embedded

Other

Encoder-
Decoder

Standalone

Figure 2: Taxonomy of GNN models used for ATS.

either the GNN is used directly for the ATS task or
it is used to support a larger system. These trends
justify the taxonomy as seen in Figure 2. More
precisely, we classify standalone ATS GNNs as
GNN models which are directly responsible for
generating a summary. Embedded GNNs on the
other hand are used to support a larger system, and
are not directly or solely responsible for producing
the summary. In addition to this difference, we
further differentiate between embedded GNNs used
in an encoder-decoder setting and other embedded
GNNs.

Note that we do not specifically differentiate be-
tween single and multi-document GNN summariza-
tion models as some models are by design capable
of handling both tasks. Additionally, we do not
make a distinction between abstractive and extrac-
tive approaches, since embedded GNNs can be part
of either approach, while abstractive approaches
have not yet been developed for standalone GNNs,
to the best of our knowledge.

3.1 Standalone GNNs

We will start our discussion of standalone GNN
models with HeterSumGraph (HSG), a model
proposed by Wang et al. (2020). We will do so due
to the fact that this model illustrates concepts and
ideas seen throughout GNNs models used for ATS.
An illustration of the general concepts presented
here can be seen in Figure 3.

The HSG model encodes each text into a graph
with three node types, sentence nodes, word nodes
and document nodes. The connection between
these nodes is decided by inclusion i.e. if the word
represented by a word node occurs in a sentence
then their respective nodes are connected by an
edge. The same principle applies to document
nodes which are connected depending on whether
a word, represented by a word node, occurs within
the document. This is a flexible structure, as it
can be used in a single-document but also multi-
document setting.

Word 1

Word 2

Word
Embedding
Generator

Sentence 1

Sentence 2

Sentence 3

Sentence
Embedding
Generator

Sentence
Selection

Figure 3: General architecture of standalone GNNs with
word nodes and sentence nodes, encoders for both node
types and a sentence selection mechanism. Inspired by
HSG.

The feature vectors for all nodes are obtained
by encoders and the edge weights are obtained by
computing the TF-IDF score for each word. The
neural network consists of a modified GAT layer.
The GAT is modified to consider the TF-IDF value
of the connecting edge. Additionally a position-
wise feed-forward (FFN) layer consisting of two
linear transformations is applied to the hidden state
after the convolution. In total three convolution
layers are used, word-sentence, sentence-word and
word-document. The model is then trained on a
node-based binary classification task that is predict-
ing whether a sentence node is to be included for
the summary or not.

The classification itself is done by a single linear
layer. The model then does not directly use the
predicted nodes to produce the summary. Instead
trigram blocking (Paulus et al., 2018) is used during
sentence selection in order to ensure sparsity of the
generated summary.

The results for this model are quite impressive
as it outperforms non-BERT based models on both
single-document and multi-document summariza-
tion for the CNN/DailyMail dataset. One should
especially note the flexibility and ability to use this
model for two tasks.

An older model by Muratore et al. (2010) can
be considered a precursor to this architecture. A
simple extension to the HSG model is proposed
by Ya et al. (2021). In their extension they modify
the model for query constraints for the summary.
This is achieved by adding a query node to the
graph structure. Additionally, they introduce a mu-

tual information maximization mechanism during
training.

A model which further follows this structure is
the one by Linmei et al. (2019). The authors there
extend the attention mechanism by adding another
layer of attention, allowing it to include informa-
tion about the type of the node during convolution.
The GNN model by Jing et al. (2021) encodes even
more information into the graph by considering the
relation between sentences on a number of different
levels. In particular, they encode the semantic and
syntactical relationship between sentences within
the graph.

This idea of encoding additional information into
the graph is also followed by Antognini and Falt-
ings (2019). They introduce an additional univer-
sal feature vector which is added to each sentence
node embedding. This universal feature vector is
learned from a large unrelated and general corpus.
This model is also unique in that it focuses on the
summarization of very small texts, on average less
than 100 words.

Taking this basic structure and idea even further
is the model called HAHSum by Jia et al. (2020a).
The construction of the input graph for HAHSum
is more involved as it aims to significantly reduce
semantic sparsity by utilizing named entities. The
model uses three types of nodes, named entity
nodes, word nodes and sentence nodes, with the
named entity nodes being anonymized tokens. The
graph is then built as follows, word nodes are con-
nected with a directed edge to a sentence node if
they occur within the sentence. Two named entities
are connected with an undirected edge if they rep-
resent the same entity and two sentence nodes are
connected with an undirected edge if they share
a trigram. Additionally, sequentially occurring
words and entities are connected with a directed
edge. This setup shows how one can encode a
substantial amount of implicit information in an
explicit manner.

HAHSum uses a GAT for each of the five node
type combinations found within the graph. Just
as in HSG, a FFN is applied after the multi-head
attention and again as in the previous model a linear
layer is used to perform the binary classification of
the sentence nodes.

The results for HAHSum show that GNNs can
perform very well. The authors of the paper tested
the model on the CNN/Daily Mail, Newsroom and
NYT dataset. The model outperforms very pow-

Encoder Decoder

GNN Encoder

Input Output

Figure 4: Typical setup for embedded GNNs in the
encoder-decoder category. The GNN is used to encode
part of the input and then the resulting encodings are
forwarded to the decoder.

erful models such as MATCHSUM (Zhong et al.,
2020) and is even able to compete in some metrics
with leading abstractive models such as PEGASUS
(Zhang et al., 2020a). The results of an Amazon
Mechanical Turk experiment corroborate these re-
sults and show that for human readers HAHSum
produce summaries with superior fluency and con-
ciseness.

Another recent GNN model which has achieved
great performance in the task of multi-document
summarization is the SgSum model by Chen et al.
(2021). Different to the approaches outlined above,
the SgSum model uses graph pooling to extract
sub-graphs from encoded documents. That is, it
first transforms the documents into a large graph,
then generates a number of sub-graphs via pooling
and convolution. These sub-graphs are then ranked
and thereby selected for a summary. This is quite
an innovative approach as it casts the problem of
multi-document summarization as a simple sub-
graph selection problem. Additionally, it outputs
an integral summary, that is the entire summary is
output by the model in the form of the sub-graph
of sentences.

3.2 Embedded GNNs

The first embedded GNN model we will present is
the GRU-GCN model by Yasunaga et al. (2017).
Despite being an older model it provides an il-
lustrative introduction as to how one can effec-
tively incorporate GNNs into established deep
learning methods. As this model utilizes GNNs
within a sequence-sequence architecture it falls into
the encoder-decoder category of embedded GNNs.
The model works exclusively with multi-document
summarization. We want to note that due to the
age of this model the GNN uses spectral-based
convolution instead of spatial-based convolution.

As the model is an encoding-decoding embedded
GNN it features three parts: the encoding part, the
GNN and a decoding part. The encoding and decod-

GNN CNN/DailyMail Performance Overview
Model Name Type Description R-1 R-2 R-L
BERTSUMEXT (Liu and Lap-
ata, 2019)

Extractive BERT baseline BERT-based 43.85 20.34 39.90

Topic-Graphsum (Cui et al.,
2020)

Extractive (Embedded) NTM + GNN 44.02 20.81 40.55

DSGSUM (Bi et al., 2021) Abstractive (Embedded) Seq-Seq with GNN 41.96 19.29 38.98
Syntactic-Graph (Xu et al.,
2020a)

Abstractive (Embedded) Syntactic graph 41.79 19.06 38.56

HAHSUM (Jia et al., 2020a) Extractive (Standalone) Entity-relations + words and sentences 44.68 21.30 40.75
Multi-Gras (Jing et al., 2021) Extractive (Standalone) Sentence information encoding 43.16 20.14 39.49
HSG (Wang et al., 2020) Extractive (Standalone) Multi-layer encoding of documents 42.95 19.76 39.23
DISCOBERT (Xu et al.,
2020b)

Extractive (Embedded) BERT+GNN 43.77 20.85 40.67

GNN DUC-2004 Performance Overview
GRU-GCN (Yasunaga et al.,
2017)

Extractive (Embedded) GRU+GNN 38.23 9.48 NA

SGSum (Chen et al., 2021) Extractive (Standalone) Subgraph extraction 39.41 10.42 35.41

Table 1: Combined results as reported in their respective papers. We only report the best performing model type
and only ROUGE-1 (R-1), ROUGE-2 (R-2) and ROUGE-L (R-L) scores. We show results on the CNN/Dailymail
dataset for single-document summarization and results on the DUC-2004 dataset for multi-document summarization.
NA denotes that the authors have not reported this score. Best results marked with boldface.

ing are done by gated recurrent networks (GRUs).
More specifically, sentence encodings are produced
by the encoding GRU network. These sentence
encodings are then used by the GNN whose in-
put graph consists solely of sentence nodes. The
edges are determined by semantic relatedness of
the sentences. The resulting sentence node feature
vectors produced by the GNN are passed to the
decoding GRU which computes salience scores for
each sentence. The results for this model have been
surpassed by other models.

Similar to the GRU-GCN model, the Topic-
GraphSum model by Cui et al. (2020) combines
an established deep neural network method with a
GNN. In it a variational autoencoder is utilized for
modeling topics within a given text, that is, it learns
latent topics via encoding-decoding. The GNN is
fed a graph consisting of topic nodes and sentence
nodes. The topic node embeddings are produced
by the autoencoder and the sentence node embed-
dings are produced by BERT. The GNN utilizes a
GAT for the prediction of sentences to be used for
the summary. Note that the autoencoder and the
GNN are trained jointly, which is why this model
is classified as an embedded model. However, as it
does not utilize the encoder-decoder architecture it
falls into the category of other embedded GNNs.

Another embedded GNN which does not follow
the encoder-decoder schema is the model by Xu
et al. (2020b). Their DISCOBERT model incorpo-
rates a GNN into a BERTSUM (Liu and Lapata,
2019) like architecture.

The DSGSum model developed by Bi et al.
(2021) utilizes a GNN to enhance the semantic
information provided to the model. DSGSum uses

the GNN mainly for encoding entity information.
The input to the GNN consists of an entity graph
which has been enriched with a knowledge graph
(KG); specifically, the entities and their relations as
defined in the KG are encoded into the graph. The
GNN then utilizes GAT to produce entity embed-
dings which are directly used by the decoder part
of the architecture. Hence DSGSum is an embed-
ded encoder-decoder model. All of the following
embedded GNN ATS models follow the ATS GNN
encoder-decoder pattern. The general principle of
these models is illustrated by Figure 4. This prin-
ciple being the usage of the GNN to supplement
the information provided to the decoder, while also
utilizing an encoder for generating the input to the
GNN.

The authors of (Wu et al., 2021b) produce a
graph based on the semantics of each sentence.
The encoding produced by the GNN and a textual
encoding of each sentence are then passed to a
decoder. Similarly, the model by Xu et al. (2020a)
uses a GNN as an encoding component. Their
model utilizes the dependency tree of the input as
a graph input to the GNN. It also uses a modified
attention mechanism which is used to decode the
attention of the GAT directly into the decoder part
of the architecture. Another model in this category
is the model by Liang et al. (2021). Following this
idea even further is the model by Li et al. (2020).
However, in contrast to DSGSum or others, their
model uses a GNN directly within the transformer
based encoder and decoder blocks, and not as an
outside component providing additional encodings.

Another area where GNNs have found some
usage is in the abstractive summarization of di-

alogues, which although a niche area, is still part of
the ATS task. The model by Zhao et al. (2020) uses
a GNN to encode the structure of the conversation
into their sequence-to-sequence architecture. This
is also done by Feng et al. (2020). Also for dia-
logue summarization Feng et al. (2021) introduce
a special type of graph encoding to a sequence-
to-sequence architecture. They utilize a GNN as
an encoder and their input graph links information
about the speaker, the spoken sentences and other
information together.

At this point we also want to shortly mention a
few models which do not perform classical ATS
but do perform a specialized form of summariza-
tion with the help of a GNN. The models by Liu
et al. (2020a) and LeClair et al. (2020) both per-
form code summarization, that is they generate
a natural language description/summarization of
code written in a programming language. They
both utilize a GNN, and also both leverage the ab-
stract syntax tree of the program given. Another
interesting model is the model by Wu et al. (2019).
Their model performs multi-video summarization
with the help of a GNN.

4 Conclusions and Outlook for Future

We have surveyed in this paper the main devel-
opments in the area of GNNs applied to the au-
tomatic text summarization task, first describing
how GNNs work and then discussing the promi-
nent models used for ATS. We have also provided
simple categories of the models. Finally, in Table
1 we have combined results from the models men-
tioned in our survey. Note that this is just a simple
enumeration of the best ROUGE scores reported,
which does not fully capture other important as-
pects of summaries such as fluency, conciseness,
relevancy and in the case of abstractive summariza-
tion, factual accuracy.

We have already highlighted some general ad-
vantages of GNNs for ATS. Now considering the
models presented and the results shown in Table 1
we want to give some pointers towards the future
of GNNs for ATS.

• Outside the Box. Models such as SGSum
and HAHSUM show how one can achieve
great performance by rethinking parts of the
ATS task. GNNs provide with their direct
acceptance of graphs a lot of freedom with
regards to the design of the input as well as

the output. The idea of reconsidering multi-
document ATS as a subgraph ranking task is
a worthwhile approach to consider further.

• Encoding and Enhancing. GNNs are able
to efficiently and effectively produce encod-
ings of graph structures, which are prevalent
throughout texts. Models like DISCOBERT
show how one can enhance the performance
of traditional models by incorporating GNNs
and leveraging their encoding ability. We be-
lieve many models can be improved by in-
corporating GNNs in ways presented in the
survey.

• Text Length. GNNs are capable of scaling
to very large graph sizes. Summarizing large
texts is an important task, but one which has
been neglected in the literature. GNNs are in
our estimation in a position to perform very
well on large text summarization.

• Explainability. No GNN ATS model so
far has leveraged the explainability aspect of
GNNs. We believe that this is a very unique
and unexplored research avenue that could
reveal valuable insights into ATS and GNNs
used for ATS.

References
Sergi Abadal, Akshay Jain, Robert Guirado, Jorge

López-Alonso, and Eduard Alarcón. 2021. Comput-
ing graph neural networks: A survey from algorithms
to accelerators. ACM Computing Surveys (CSUR),
54(9):1–38.

Diego Antognini and Boi Faltings. 2019. Learning to
create sentence semantic relation graphs for multi-
document summarization. In Proceedings of the 2nd
Workshop on New Frontiers in Summarization, pages
32–41.

Qiwei Bi, Haoyuan Li, Kun Lu, and Hanfang Yang.
2021. Augmented abstractive summarization with
document-level semantic graph. Journal of Data
Science, 19(3).

Shaked Brody, Uri Alon, and Eran Yahav. 2021. How at-
tentive are graph attention networks? arXiv preprint
arXiv:2105.14491.

Moye Chen, Wei Li, Jiachen Liu, Xinyan Xiao, Hua
Wu, and Haifeng Wang. 2021. Sgsum: Transform-
ing multi-document summarization into sub-graph
selection. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 4063–4074.

Peng Cui, Le Hu, and Yuanchao Liu. 2020. Enhancing
extractive text summarization with topic-aware graph
neural networks. In Proceedings of the 28th Inter-
national Conference on Computational Linguistics,
pages 5360–5371.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pages 4171–
4186.

Ming Ding, Chang Zhou, Hongxia Yang, and Jie Tang.
2020. Cogltx: Applying bert to long texts. Advances
in Neural Information Processing Systems, 33:12792–
12804.

Wafaa S. El-Kassas, Cherif R. Salama, Ahmed A. Rafea,
and Hoda K. Mohamed. 2021. Automatic text sum-
marization: A comprehensive survey. Expert Sys-
tems with Applications, 165:113679.

Xiachong Feng, Xiaocheng Feng, and Bing Qin. 2021.
Incorporating commonsense knowledge into abstrac-
tive dialogue summarization via heterogeneous graph
networks. In China National Conference on Chinese
Computational Linguistics, pages 127–142. Springer.

Xiachong Feng, Xiaocheng Feng, Bing Qin, and Xinwei
Geng. 2020. Dialogue discourse-aware graph model
and data augmentation for meeting summarization.
Dialogue, 1:U2.

Daniele Grattarola and Cesare Alippi. 2021. Graph neu-
ral networks in tensorflow and keras with spektral [ap-
plication notes]. IEEE Computational Intelligence
Magazine, 16(1):99–106.

Ruipeng Jia, Yanan Cao, Hengzhu Tang, Fang Fang,
Cong Cao, and Shi Wang. 2020a. Neural extractive
summarization with hierarchical attentive heteroge-
neous graph network. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 3622–3631.

Zhihao Jia, Sina Lin, Mingyu Gao, Matei Zaharia, and
Alex Aiken. 2020b. Improving the accuracy, scalabil-
ity, and performance of graph neural networks with
roc. Proceedings of Machine Learning and Systems,
2:187–198.

Baoyu Jing, Zeyu You, Tao Yang, Wei Fan, and Hang-
hang Tong. 2021. Multiplex graph neural network for
extractive text summarization. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 133–139.

Wojciech Kryściński, Nitish Shirish Keskar, Bryan Mc-
Cann, Caiming Xiong, and Richard Socher. 2019.
Neural text summarization: A critical evaluation. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 540–551.

Wojciech Kryściński, Bryan McCann, Caiming Xiong,
and Richard Socher. 2020. Evaluating the factual
consistency of abstractive text summarization. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 9332–9346.

Alexander LeClair, Sakib Haque, Lingfei Wu, and
Collin McMillan. 2020. Improved code summariza-
tion via a graph neural network. In Proceedings of
the 28th International Conference on Program Com-
prehension, pages 184–195.

Guohao Li, Matthias Müller, Bernard Ghanem, and
Vladlen Koltun. 2021. Training graph neural net-
works with 1000 layers. In International conference
on machine learning, pages 6437–6449. PMLR.

Wei Li, Xinyan Xiao, Jiachen Liu, Hua Wu, Haifeng
Wang, and Junping Du. 2020. Leveraging graph to
improve abstractive multi-document summarization.
arXiv preprint arXiv:2005.10043.

Zeyu Liang, Junping Du, Yingxia Shao, and Houye Ji.
2021. Gated graph neural attention networks for ab-
stractive summarization. Neurocomputing, 431:128–
136.

Hu Linmei, Tianchi Yang, Chuan Shi, Houye Ji, and
Xiaoli Li. 2019. Heterogeneous graph attention net-
works for semi-supervised short text classification.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 4821–4830.

Shangqing Liu, Yu Chen, Xiaofei Xie, Jing Kai Siow,
and Yang Liu. 2020a. Retrieval-augmented gener-
ation for code summarization via hybrid gnn. In
International Conference on Learning Representa-
tions.

Xien Liu, Xinxin You, Xiao Zhang, Ji Wu, and Ping Lv.
2020b. Tensor graph convolutional networks for text
classification. In Proceedings of the AAAI conference
on artificial intelligence, volume 34, pages 8409–
8416.

Yang Liu and Mirella Lapata. 2019. Text summariza-
tion with pretrained encoders. In Proceedings of
the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 3730–3740.

Rui Luo, Shan Zhao, and Zhiping Cai. 2020. Applica-
tion of graph neural network in automatic text sum-
marization. In National Conference of Theoretical
Computer Science, pages 123–138. Springer.

Masoud Malekzadeh, Parisa Hajibabaee, Maryam Hei-
dari, Samira Zad, Ozlem Uzuner, and James H Jones.
2021. Review of graph neural network in text clas-
sification. In 2021 IEEE 12th Annual Ubiquitous
Computing, Electronics & Mobile Communication
Conference (UEMCON), pages 0084–0091. IEEE.

https://doi.org/https://doi.org/10.1016/j.eswa.2020.113679
https://doi.org/https://doi.org/10.1016/j.eswa.2020.113679

Rada Mihalcea and Paul Tarau. 2004. Textrank: Bring-
ing order into text. In Proceedings of the 2004 con-
ference on empirical methods in natural language
processing, pages 404–411.

Donatella Muratore, Markus Hagenbuchner, Franco
Scarselli, and Ah Chung Tsoi. 2010. Sentence ex-
traction by graph neural networks. In International
Conference on Artificial Neural Networks, pages 237–
246. Springer.

Romain Paulus, Caiming Xiong, and Richard Socher.
2018. A deep reinforced model for abstractive sum-
marization. In International Conference on Learning
Representations.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Liò, and Yoshua Bengio.
2018. Graph attention networks. In International
Conference on Learning Representations.

Danqing Wang, Pengfei Liu, Yining Zheng, Xipeng Qiu,
and Xuanjing Huang. 2020. Heterogeneous graph
neural networks for extractive document summariza-
tion. In ACL.

Jiaxin Wu, Sheng-Hua Zhong, and Yan Liu. 2019. Mvs-
gcn: A novel graph convolutional network for multi-
video summarization. In Proceedings of the 27th
ACM International Conference on Multimedia, pages
827–835.

Lingfei Wu, Yu Chen, Kai Shen, Xiaojie Guo, Hanning
Gao, Shucheng Li, Jian Pei, and Bo Long. 2021a.
Graph neural networks for natural language process-
ing: A survey. arXiv preprint arXiv:2106.06090.

Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, and Bin
Cui. 2020a. Graph neural networks in recommender
systems: a survey. ACM Computing Surveys (CSUR).

Wenhao Wu, Wei Li, Xinyan Xiao, Jiachen Liu,
Ziqiang Cao, Sujian Li, Hua Wu, and Haifeng
Wang. 2021b. Bass: Boosting abstractive summa-
rization with unified semantic graph. arXiv preprint
arXiv:2105.12041.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong
Long, Chengqi Zhang, and S Yu Philip. 2020b. A
comprehensive survey on graph neural networks.
IEEE transactions on neural networks and learning
systems, 32(1):4–24.

Haiyang Xu, Yun Wang, Kun Han, Baochang Ma, Jun-
wen Chen, and Xiangang Li. 2020a. Selective at-
tention encoders by syntactic graph convolutional
networks for document summarization. In ICASSP
2020-2020 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pages
8219–8223. IEEE.

Jiacheng Xu, Zhe Gan, Yu Cheng, and Jingjing Liu.
2020b. Discourse-aware neural extractive text sum-
marization. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 5021–5031.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie
Jegelka. 2018. How powerful are graph neural net-
works? In International Conference on Learning
Representations.

Mingzhou Xu, Liangyou Li, Derek F Wong, Qun Liu,
and Lidia S Chao. 2021. Document graph for neural
machine translation. In Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language
Processing, pages 8435–8448.

Jing Ya, Tingwen Liu, Jiangxia Cao, and Li Guo.
2021. Heterogeneous graph neural networks for
query-focused summarization. In Proceedings of
the 2021 SIAM International Conference on Data
Mining (SDM), pages 720–728. SIAM.

Michihiro Yasunaga, Rui Zhang, Kshitijh Meelu, Ayush
Pareek, Krishnan Srinivasan, and Dragomir Radev.
2017. Graph-based neural multi-document summa-
rization. In Proceedings of the 21st Conference on
Computational Natural Language Learning (CoNLL
2017), pages 452–462.

Yongjing Yin, Fandong Meng, Jinsong Su, Chulun
Zhou, Zhengyuan Yang, Jie Zhou, and Jiebo Luo.
2020. A novel graph-based multi-modal fusion en-
coder for neural machine translation. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 3025–3035.

Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka
Zitnik, and Jure Leskovec. 2019. Gnnexplainer: Gen-
erating explanations for graph neural networks. Ad-
vances in neural information processing systems, 32.

Hao Yuan, Haiyang Yu, Shurui Gui, and Shuiwang Ji.
2020. Explainability in graph neural networks: A
taxonomic survey. arXiv preprint arXiv:2012.15445.

Hang Zhang, Yeyun Gong, Yelong Shen, Weisheng Li,
Jiancheng Lv, Nan Duan, and Weizhu Chen. 2021.
Poolingformer: Long document modeling with pool-
ing attention. In International Conference on Ma-
chine Learning, pages 12437–12446. PMLR.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Pe-
ter Liu. 2020a. Pegasus: Pre-training with extracted
gap-sentences for abstractive summarization. In In-
ternational Conference on Machine Learning, pages
11328–11339. PMLR.

Yufeng Zhang, Xueli Yu, Zeyu Cui, Shu Wu, Zhongzhen
Wen, and Liang Wang. 2020b. Every document owns
its structure: Inductive text classification via graph
neural networks. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 334–339.

Lulu Zhao, Weiran Xu, and Jun Guo. 2020. Improving
abstractive dialogue summarization with graph struc-
tures and topic words. In Proceedings of the 28th
International Conference on Computational Linguis-
tics, pages 437–449.

Ming Zhong, Pengfei Liu, Yiran Chen, Danqing Wang,
Xipeng Qiu, and Xuan-Jing Huang. 2020. Extractive
summarization as text matching. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 6197–6208.

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan
Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
Changcheng Li, and Maosong Sun. 2020. Graph
neural networks: A review of methods and applica-
tions. AI Open, 1:57–81.

